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Abstract

The difference average risk-neutral and physical volatility substantial and trans-

lates into a large return premium for sellers of index options. This paper studies

a general equilibrium model based on long-run risk in an effort to explain the pre-

mium. In estimating the model using data on stock returns and volatility (VIX), the

model captures the premium and also the large negative correlation between shocks

to volatility and stock prices. Numerical simulations verify that writers of index op-

tions earn high rates of return in equilibrium and that the return patterns are similar

to that seen in the S&P 500 index options data.
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1 Introduction

Long-Term shorted options at prices that implied a market volatility of

19%. As options prices rose, Long-Term continued to sell. Other firms

sold in tiny amounts. Not Long-Term. It just kept selling. .. Eventually

they had a staggering $ 40 million riding on each percentage point change

in the equity volatility in the United States and an equivalent amount in

Europe - perhaps a fourth of the overall market. Morgan Stanley coined a

nickname for the fund: the Central Bank of Volatility.

Roger Lowenstein, “When Genius Failed: The Rise and Fall of

Long-Term Capital Management”

The practice of selling volatility is a favorite among hedge funds. Traditionally, in-

vestors who “sell volatility” typically take a simultaneous short position in put and call

options (straddles). Such positions have a net positive return if the underlying stock price

moves very little before option expiration. Conversely, the investor loses money if the price

increases or decreases a lot prior to expiration. It yields a positive average return over

time if the option implied volatility systematically exceeds actual price volatility. Recent

market innovations such as variance swaps and futures on the VIX volatility index allow

investors to buy and sell volatility like any other asset. For example, a variance swap pays

the difference between “realized variance,” defined to be the average squared daily return,

and the squared VIX index, allowing the investor to bet directly on the difference between
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physical, realized stock price variation and the variation implicit in options prices (the VIX

index).

It is well known that on average, the implied volatility of index options exceeds the

unconditional annualized standard deviation of the underlying index. For example, the VIX

index, which gives a model-free (non-parametric) option implied estimate of the volatility of

the S&P 500, averages about 19% between 1990 and 2007. The unconditional annualized

standard deviation of the S&P 500 is only about 15.7%. The 3.3% difference between

option implied and realized standard deviation suggests that ex-ante, the premium for

writing options on the S&P 500, is substantial. For example, if we consider a one month

maturity at-the-money option, an option priced at 19% implied volatility is about 18% more

expensive than one priced at 16% implied volatility. In a Black-Scholes world, this 18%

translates into pure arbitrage profits for writers of options because the writer can perfectly

hedge a position that pays the difference between the market price and the theoretical

price. In the real world, obviously, these gains cannot be pocketed risk free. Rather, a short

position in volatility entails substantial risk since the volatility itself changes randomly over

time. Still, empirical evidence suggests that the average returns generated by issuers of

options are substantial and yield risk-reward ratios that far exceed those of other asset

classes including broad equity indices such as the CRSP or the S&P 500.

Indeed, several papers have assessed the size of the volatility premium and the risk

rewards offered to writers of index options. Coval and Shumway (2001) report monthly

Sharpe ratios of about 0.3 (corresponding to annualized numbers of about 1) to investors
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who write crash-protected straddles1. Driessen and Maenhout (2006) examine US equity

index options from 1992 to 2001 and find that various options strategies give annualized

Sharpe ratios of about 0.72. Eraker (2007b) reports an annualized Sharpe ratio of 0.45 from

selling all options available. While Sharpe ratios in the 0.45 to 1 range may seem persuasive,

there is also considerable uncertainty associated with the numbers, as the empirical studies

rely on relatively short sampling periods. On the other hand, the crash-protected straddle

strategy in Coval and Shumway requires the purchase of out-of-the-money put options

which is an expensive way to hedge downside risk. Of course, the relatively high prices of

out-of-the-money puts has motivated much of the research on generalized options pricing

models. Indeed, much of this work has focused on developing no-arbitrage models which

can explain the steepness of the Black-Scholes implied volatility “smile” which again is

indicative of the high price of out-of-the-money puts.

In recent work Brodie, Chernov, and Johannes (2007b) point out that put options

have large negative betas which in turn yield large negative expected rates of return if

the CAPM holds. Without considering the volatility premium, they show that writing

6% out-of-the-money puts earns an average monthly rate of return of -22.6 % under the

standard Black-Scholes and classic CAPM assumptions if the annual Sharpe ratio in the

stock market is 0.06/0.15=0.4 (see Brodie, Chernov, and Johannes Table 4). The large

negative average return documented in their paper is purely a risk premium for directional

1The crash protection is accomplished by buying a put that is ten percent out of the money for each
straddle, effectively capping the loss potential at ten percent. The annualization of Coval and Shumway’s
monthly numbers is accomplished by multiplying by

√
12.
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stock price exposure. This risk premium comes from the simple fact that OTM puts have

astronomically large market betas resulting from the fact that the beta of a put option

approaches negative infinity as the strike approaches zero. Brodie et al. do not consider

adjustments for the directional price exposure which is easily incorporated by delta hedging.

In other words, their modeling framework provides zero risk premium to zero-delta option

portfolios, such as at-the-money straddles.

Bakshi and Kapadia (2003) study gains from delta-hedged puts and calls over various

maturities and strikes. They find significantly negative premia across various maturity

and strike categories. In particular, they report that out-of-the-money put options lose,

on average, between 82 and 91% of their initial value. Returns on out-of-the-money puts

that were between four and six percent OTM averaged negative 95% and 58% percent

respectively in Bondarenko (2003). Eraker (2007b) studies an elaborate hedging scheme

and finds annualized Sharpe ratios as high as 1.6. Finally, it should be noted that in no

way do Sharpe ratios actually exhaust the real risks involved in selling volatility because

the returns from volatility-based strategies are highly non-gaussian such that an investor

without mean-variance utility is likely to require substantial premia for tail-risks involved

in options strategies.

This paper seeks to find an equilibrium explanation for the volatility premium. In

our quest for a rationalization of the premium, consider first the simplest of equilibrium

models - the CAPM. It is well documented that the volatility of the S&P 500 is massively

negatively correlated with the S&P 500 returns themselves. Estimates of this correlation
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over different sampling intervals typically range from -0.7 to -0.9. Considering that the

volatility of the relative changes in the VIX volatility index is about 0.05, five times that

of the S&P itself, an asset whose returns move one-to-one with relative changes in the VIX

would have a market beta in the range of -3.5 to -4.5. The CAPM, obviously, prescribes a

very sizable, negative risk premium to such an asset. For example, with a beta of -4.5 and a

7% annual market risk premium, the risk premium for selling volatility is 31.5% according

to the CAPM. While this is a large number, it is still much smaller than the 83% annual

returns reported from short options positions in Driessen and Maenhout (2006) or the 160%

in Coval & Shumway (2001). Indeed, Bondarenko (2003) computes CAPM betas for the

option returns and finds that the model produces large statistically significant alphas and

explains very little of the average option returns.

The problem with our back-of-the-envelope CAPM computation is that the model does

not really apply in its simplest form to an economy with randomly changing volatility, as is

assumed here. Moreover, while I have argued that a negative correlation between volatility

and returns exists, it is equally important to understand why this correlation exists. To

this end this paper uses a model in which the negative return-volatility relation results

from an endogenous negative price response to increases in economic uncertainty. The

size of the correlation, therefore, depends on investors’ preferences towards uncertainty.

This model is not a traditional CAPM model where volatility has a negative market risk

premium because it is assumed to be negatively correlated with market returns. Rather,
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the direction of causality is the opposite: the aggregate market return has a high positive

risk premium because it correlates negatively with volatility shocks.

This paper studies the volatility premium through the general equilibrium model pro-

posed in Eraker and Shaliastovich (2008). This is a simple model of an endowment economy

where uncertainty about future economic growth fluctuates over time. Incorporating the

random time variation in the macro-economic uncertainty is a key element of the model.

Stock prices in this economy are obtained as the present value of future dividends, dis-

counted using an endogenously defined equilibrium stochastic discount factor. Since ex-

pected future dividends do not change when uncertainty about the future does, an increase

(decrease) in uncertainty leads to an endogenous decrease (increase) in stock prices. This

captures the aforementioned negative return-volatility correlation.

The Eraker-Shaliastovich model is based on a long-run risk equilibrium formulation.

Long-run risk models, as pioneered in Bansal and Yaron (2004), are based upon the idea

that shocks having multi-period, long-run effects are priced in equilibrium when investors

have preferences over the timing of uncertainty resolution which differ from their intertem-

poral elasticity of consumption substitution.

Separating the two, as is the case in the recursive preference structure of Kreps-Porteus-

Epstein-Zin (Kreps and Porteus (1978) , Epstein and Zin (1989), and Duffie and Epstein

(1992)) is crucial for these long-run effects to occur. By contrast, standard CRRA prefer-

ences produce zero risk premia for all shocks that do not directly affect consumption. CRRA

7



preferences do not generate risk premia that increase with the persistence of volatility or

other state-variables. In fact, imposing the parametric constraints that yield a CRRA

preference structure onto the KPEZ preferences, long-run risk models including the one

presented here produce a zero market price of volatility risk, and thus a zero volatility

premium.

Though the equilibrium model studied in this paper resembles the Bansal-Yaron model,

there are several important differences. First, this model is based on a continuous time

formulation. It does not have a stochastic persistent growth rate of consumption like the

BY model. There are two priced shocks in the model: shocks to consumption growth and

shocks to the volatility of consumption growth. The shocks to volatility can either be small

(Brownian motion) or potentially large, causing the volatility path to be discontinuous

(jump). The possibility of large shocks to economic uncertainty helps explain the sizable

risk premia associated with volatility.

In concurrent independent work, Yaron and Drechsler (2010) and Drechsler (2008) study

option pricing under long-run risk specifications and discuss the volatility premium in par-

ticular. Drechler and Yaron conclude that their model can replicate the unconditional

volatility risk premium in seen in the data when adding jumps to the volatility process, as

in Eraker and Shaliastovich. These papers do not address whether their models are capable

of generating an endogenous volatility risk premium large enough to explain the substantial

negative average returns on options, or whether the model can generate the leverage effect

in equilibrium. I am unaware of any existing model capable of generating a sample corre-
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lation of −0.72 between changes in volatility and returns simply by endogenizing the price

response to changes in uncertainty. For example, Wu (2001) proposes a model based on

partial equilibrium which produces a −0.61 correlation, but this is obtained by assuming

that dividends and volatility are exogenously negatively correlated. Using calibration to

monthly data consumption equity and bond data, Bansal & Yaron (2004) model produces

a volatility-return correlation of -.32.

There are many papers that consider equilibrium based on time-separable preferences.

Classic articles on this issue include Merton (1973), Breeden (1979), Duffie and Zame

(1989), and Cox, Ingersoll, and Ross (1985) among others. In a precursor to the Bansal-

Yaron analysis, Campbell (1993) studies KPEZ preferences in the context of state-variables

driven by VARs. Preferences can be inferred from state-prices implicit in derivatives prices

as in Breeden and Litzenberger (1978) and Äıt-Sahalia and Lo (2000) who provide non-

parametric estimates of preferences from options. Bates (2006) considers equilibrium in

the context of agents with a particular aversion toward downside risk (crashes) in order

to explain the put premium. Liu, Pan, and Wang (2005) study recursive preferences ob-

tained under uncertainty aversion and show that model ambiguity can explain the large

premium on put options. Other papers which consider KPEZ preferences in the context of

options pricing include Garcia, Luger, and Renault (2003) and Benzoni, Collin-Dufresne,

and Goldstein (2005). Bansal, Dittmar, and Kiku (2005), Bansal, Gallant, and Tauchen

(2007) and Campbell and Beeler (2010), and Ferson, Nallaready, and Xie (2010) present

empirical evidence on the performance of long-run risk models.
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A large part of the finance literature is concerned with developing and estimating no-

arbitrage models of asset prices. A sizable literature exists on developing and estimating

such models for options pricing. Semi-analytical pricing models were developed in Stein

and Stein (1991) and Heston (1993) (stochastic volatility), and Bates (1996) (jumps). Bak-

shi, Cao, and Chen (1997), Bates (2000), and Eraker (2004) consider empirical tests of such

models. A survey of this literature can be found in Singleton (2006). Explaining the volatil-

ity premium with a no-arbitrage model is easy because no-arbitrage models essentially allow

market prices of risk to be free parameters. Since the premium is a function of the market

price of risk, it is possible to take almost any no-arbitrage model with stochastic volatility

and assign a market price of risk large enough to generate a sufficiently large difference be-

tween the option-implied and observed volatility. By contrast, therefore, this paper seeks

to find an equilibrium interpretation of the premium. This is much more difficult, because

the market prices of risk in an equilibrium model are intimately tied to risk preferences

as well as the dynamics describing the exogenous (macro) quantities in the economy. The

challenge, therefore, is to find a model specification coupled with parameter estimates that

imply asset return moments that are broadly consistent with the equity premium and the

return variability, as well as the return-volatility correlation and the volatility premium.

This paper uses a novel estimation approach based on likelihood inference. Since the

theoretical model implies a linear relationship between economic uncertainty and implied

options volatility, estimation is conducted using observed stock prices and implied volatil-

ity (VIX index). Using VIX data allows us to identify all the parameters that determine
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the dynamic behavior of volatility. By constraining mean consumption growth and con-

sumption volatility to equal that which is observed in consumption data, the remaining

parameters, notably preference parameters, are inferred from returns and volatility data

using Bayesian MCMC likelihood inference.

The empirical results are as follows: the volatility premium averages 3.3 percent in

annualized standard deviation units and 1.5 in variance units in the data. The equilib-

rium model produces a premium of 3.8 percent in standard deviation units and 1.47 in

variance units over the sample. These differences between the data and the model are

statistically insignificant. The equilibrium model also produces an endogenous correlation

between changes in volatility and stock returns (the so-called “leverage effect” or asym-

metric volatility) of -0.66, which compares to -0.72 in the data. This difference is again

statistically insignificantly different. Thus, the equilibrium model successfully endogenizes

the “leverage-effect” as the stock price responds negatively to increases in uncertainty.

This paper computes several measures of the reward to variability (i.e., Sharpe ratios) of

volatility strategies. It is shown that the total reward to variability averages to about -0.48

in the theoretical model. This is somewhat lower than reported in the empirical options

literature, in which Sharpe ratios for sellers of volatility are reported to range between

0.45 and 1. The model exhibits a large variation in risk premia, implying that investors

who sell volatility when premia are high will earn Sharpe ratios that well exceed 0.45. In

addition, the paper demonstrates that theoretical options returns and Sharpe ratios earned

by investors who sell volatility are relatively high. This means that high Sharpe ratios for
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options sellers found in previous empirical studies could be consistent with the equilibrium

model and its estimated parameters.

The remainder of this paper is organized as follows. The next section presents the

model and the theoretical equilibrium framework. Section 3 discusses estimation and data.

Section 4 presents the empirical results, including the estimated conditional and uncondi-

tional volatility premia, structural estimates of the equilibrium model, the model implied

volatility premium, theoretical options returns, as well as various model diagnostics. Sec-

tion 4 presents out-of-sample results using data through the financial crisis of 2008. Section

5 concludes.

2 Model

The objective of the paper is to present an equilibrium explanation for the volatility pre-

mium. To derive a model that even has a chance at generating a significant market price of

volatility risk required to explain the premium, one needs to consider non-standard equi-

librium constructions. It is not enough to assume, for example, a standard CRRA power

utility consumption model because in this model the volatility risk premium will be zero

unless volatility correlates directly with consumption. This paper therefore follows Eraker

and Shaliastovich (2008) and specifies continuous time long-run risk equilibrium. Unlike

Bansal and Yaron (2004), the equilibrium model assumes that consumption growth rates

are constant, and that the only channel of variation in expected returns is coming from
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changes in volatility. It is easy to incorporate additional risk factors such as time-varying

expected real consumption growth (as in Bansal and Yaron (2004)), or time-varying in-

flation risk premia (as in Piazzesi and Schneider (2006), Eraker (2006)). By focusing on

volatility as the single driving factor, we avoid having to assess how additional factors im-

pact the premium. The model framework is outlined in detail in Eraker and Shaliastovich

(2008) and a brief discussion is given below.

2.1 Assumptions

We consider an endowment economy where a representative agent has Kreps-Porteus-

Epstein-Zin recursive preferences,

Ut =

[

(1 − δ)C
1− 1

ψ

t + δ(EtU
1−γ
t+1 )

1−
1

ψ
1−γ

]1− 1

ψ

. (1)

The parameters δ, γ, and ψ represent the subjective discount factor, preference over res-

olution of uncertainty, and elasticity of substitution, respectively. The KPEZ preference

structure collapses to a standard CRRA utility representation if γ = 1/ψ. It is well under-

stood that the KPEZ preferences lead to the Euler equation

Et

[

δθ

(

Ct+1

Ct

)

−
θ
ψ

R
−(1−θ)
c,t+1 Ri,t+1

]

= 1, (2)

13



where θ = (1− γ)/(1− 1/ψ), Rc,t is the return on aggregate wealth, defined as the present

value of future consumption, and Ri,t is the return on some arbitrary asset. The dynamics

of aggregate wealth are endogenous to the model and depend on the assumed dynamics for

consumption. The stock market does not capitalize the entire asset pool in the economy.

Rather, it is assumed that the aggregate dividend on market-capitalized assets follows a

process, D, which differs from the aggregate consumption process, C. Following Bansal

and Yaron (2004) the model allows for time-varying uncertainty in the macro economy, but

without time-variation or stochastics in expected growth rates. The model is

d lnC = µcdt+
√
V dW c (3)

d lnD = µcdt+ φd

√
V dW c + σd

√
V dW d (4)

dV = [κv(v̄ − V ) − l1µV v̄] dt+ σv

√
V dW V + ξdN (5)

where dN is a Poisson jump process with arrival intensity proportional to the level of

economic uncertainty, l1V . The volatility process, V , has jump sizes, ξ, assumed to follow

a Gamma distribution,

ξ ∼ GA(µv/r, r)

such that E(ξ) = µv and r is the shape parameter.

The model in equations 3 to 5 is a very simple one, and probably offers an overly

simplistic view of both the macro-economy as well as asset pricing implications for assets

outside the model. For example, the model cannot successfully capture the time-variation
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in the term structure of interest rates because there is only a single factor, V , which drives

expected asset returns. It is easy to generalize the model to allow for additional factors.

Since this paper focuses only on the volatility risk premium and the interaction between

volatility and stock returns, additional factors are omitted from the model. It should be

noted however, that allowing for additional factors such as stochastic growth rates will only

increase the premium if shocks to the growth rate (as in Bansal and Yaron) are proportional

to the economic uncertainty, V .

2.2 Equilibrium

This paper follows Eraker and Shaliastovich (2008) and derives continuous time equilibrium

prices from the KPEZ Euler equation (1). While further details can be found in Eraker

and Shaliastovich, the following discussion highlights the essentials.

The price-dividend ratios are given by

zt := lnPt − lnDt = A0,d +Bv,dVt. (6)

where Pt is the time t stock price. This equation illustrates that price-multiples in this econ-

omy depend only on the level of economic uncertainty, V . The parameter Bv,d determines

how stock prices respond to changes in volatility. Since,

d lnPt = d lnDt +Bv,ddVt, (7)
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the (log) stock price d lnP responds negatively to changes in volatility whenever Bv,d is

negative.

There are two priced risk factors in the economy: shocks to consumption dW c, and

shocks to volatility. The latter can come either in terms of “small” shocks dW V or dis-

continuous shocks ξdN which can be large. The market price of consumption shocks is

simply γ, the “risk aversion,” in this model. The market prices of both diffusive and jump

volatility shocks are determined by the parameter

λv = (1 − θ)k1Bv,d. (8)

The market price of diffusive volatility shocks is given by

Λt = λvσv

√

Vt (9)

and is time-varying since it depends on Vt. Thus, investments in volatility-sensitive assets,

such as the aggregate stock market as well as derivatives, command a time-varying risk

premium determined by λv.

2.3 Equivalent Measure

In the following I discuss the evaluation of derivatives prices and derive an explicit ex-

pression for the long-run, unconditional volatility premium. To discuss derivative prices,
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we use the standard approach in the derivatives literature and specify the dynamics of the

economy using an imaginary world adjusted for risk. This risk-neutralized economy is given

by

d lnC = (µc − γV )dt+
√
V dW̃ c (10)

d lnD = µcdt+ φd

√
V dW̃ c + σd

√
V dW d (11)

dV =
[

κv(v̄ − V ) − l1µV v̄ − λvσ
2
vV

]

dt+ σv

√
V dW̃ V + ξqdN q (12)

ξQ ∼ GA(
µv

r + λvµv

, r) (13)

lQ1 = (1 +
λvµv

r
)−rl1 (14)

where W̃ denotes Brownian motion under Q, N q is a Poisson counting process with in-

stantaneous arrival intensity lQ1 Vt, and ξQ is the distribution of jump sizes under Q. The

parametric restriction r > λvµv (an implicit restriction on the permissible equilibriums) en-

sures that the jump intensity and jump size distributions are well-defined. In this case, it is

easy to see that jumps arrive more frequently and are greater in size under the risk neutral

measure, whenever λv < 0. This makes it appear as if the risk-neutralized economy has

greater and more frequent jumps, and thus market crashes, than what can be objectively

inferred from studying the actual economy. This again implies that options prices, which

depend directly on the dynamics under the risk neutral measure, reflect risk premia for

extreme events that may substantially exceed the frequency and magnitude of the actual

events.
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The dynamics of the stock price is given by

d lnPt =
[

(µ− φγVt) +Bd,v(κv(v̄ − Vt) − λvσ
2
vVt) −Bd,vl1µvv̄

]

dt

+ σd

√

VtdW
Q
d,t + φ

√

VtdW
Q
c,t +Bd,vσv

√

VtdW
Q
v,t +Bd,vξ

Q
V dN

Q
t . (15)

under the equivalent measure and

d lnPt = [µ+Bd,v(κv(v̄ − Vt)) −Bd,vl1µvv̄] dt

+ σd

√

VtdW
Q
d,t + φ

√

VtdWc,t +Bd,vσv

√

VtdWv,t +Bd,vξV dNt. (16)

under the objective, observable measure. Note that the volatility shocks enter directly into

the dynamics for the stock price with a multiplier equal to Bv,d. This is true for both the

diffusive shocks and the jumps. The correlation between jumps in stock prices and jumps

in volatility was found empirically relevant in Eraker, Johannes and Polson (2003). In that

model, however, there is no explicit link between the correlation of diffusive shocks in prices

and volatility and the correlation in price jumps and volatility jumps. By and large, one

of the main advantages of specifying a model using equilibrium arguments is that it takes

away the need for guesswork in specifying the stock price as well as the link between the

objective and risk-neutral dynamics.
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2.4 The Volatility Premium

The volatility premium is defined as the difference between the conditional variance (or

standard deviation) of the (log) stock price some τ periods ahead,

V Pt(τ) = VarQ
t (lnPt+τ ) − Vart(lnPt+τ ). (17)

We can compute the premium from knowledge of the moment generating function Φi(u, τ) =

Ei
t exp(u lnPt+τ ) for i = {P,Q}. The volatility premium is computed using the fact that

Vari
t(lnPt+τ ) = ∂2 ln Φi(u)/∂u

2|u=0 which is found numerically by solving the the standard

ODE’s that give the generating functions for the (log) stock price. Since the generating

function is of the affine form Φi(u, τ) = exp(αi(u, τ) + βi(u, τ)Vt) we have that the

Vari
t(lnPt+τ ) = α′′

i (0, τ) + β ′′

i (0, τ)Vt. (18)

In particular, the (squared) VIX index is the conditional variance 22 days (one month)

ahead is a linear function of the underlying macro-volatility, Vt,

V IX2
t = VarQ

t (lnPt+22) = α′′

Q(0, 22) + β ′′

Q(0, 22)Vt (19)

=: αv + βvVt. (20)

This equation is used for econometric identification as will become clear below. While we

compute the volatility premium numerically at one-month horizons corresponding to the
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theoretical computation of the VIX index, it is easy to see from (15) and (16) that the

premium is zero as τ → 0 if the model does not have volatility jumps. A volatility process

with continuous paths and no jumps carries an unconditional, long-run volatility premium.

3 Estimation and Data

In order to construct inference for the volatility premium, this paper employs full struc-

tural likelihood-based inference for the underlying equilibrium model. This is carried

out by formulating a likelihood function which relies on the equilibrium dynamics of

stock prices and volatility. The equilibrium solution is characterized by the parameters

{k1, Bv, k1,d, Bd,v, λv, A0, A0,d, αv, βv}. Since these parameters are non-linear functions of

the structural parameters in the model, we need to solve for these equilibrium parameters

for each iteration of the likelihood function. This poses a significant numerical estimation

challenge. The following discussion gives an overview of the estimation approach.
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Let Yt = (R̃t, V IX
2
t ) denote the observed returns R̃t =

∫ t

t−1
d lnRs and implied volatility

data. Let Xt = (lnDt, Vt) be the unobserved dividend and macro-volatility processes. We

have that









R̃t

V IX2
t









=









k0 + (k1 − 1)A0,d

αv









+









1 kdBv,d

βv 0

















lnDt

Vt









−









1 Bd

0 0

















lnDt−1

Vt−1









, (21)

or more compactly

Yt = α + β̄Xt + ¯̄βXt−1.

Since there is a one-to-one map between the unobserved state-variables Xt = (lnDt, Vt)

and the observed data Yt, we can solve for the states given a parameter Θ∗. Define

X∗

t = {Xt | Yt = α∗ + β̄∗Xt + ¯̄β∗Xt−1}

where α∗, β̄∗ and ¯̄β∗ are equilibrium solutions at Θ∗. The likelihood function can now be

computed from

lnL =

T
∑

t=1

ln px(X
∗

t | X∗

t−1,Θ
∗) − T

2
ln |β̄β̄ ′| (22)

where px(Xt | Xt−1,Θ) is the transition density of the jump-diffusion process Xt.

21



Several methods can be used to compute px(. | .). This paper relies on a simulation

based estimator which involves sampling the jump times △Jti as well as jump sizes ξti

and artificial sampling intervals ti = t + i△ for △ = 1/m where m is chosen by the

econometrician. This approach follows Eraker (2001) and Eraker, Johannes, and Polson

(2003) among others. The availability of data on the VIX index limits the sample size to

1990-on. This paper uses end of day data for S&P 500 log-returns as well as VIX data

from 1990 until the end of 2006. This yields a total of 4286 daily observations.

4 Empirical Results

4.1 Descriptive Evidence

Figure 1 presents exploratory evidence on the behavior of the VIX volatility index, as

well as the volatility premium. In order to gauge the volatility premium, I constructed a

model-based forecast of the 22 day ahead integrated variance

VarP
t (lnPt+22) = Et

∫ t+22

t

σ2
sds

which amounts to the theoretical variance of the stock returns under the “observable” mea-

sure P . The square-root of this quantity is referred to as the conditional standard deviation

in the figure. The difference between the VIX index and the model-based forecasted con-

ditional standard deviation is a noisy estimate of the conditional volatility premium. As
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Figure 1: Option implied (VIX) data and conditional standard deviation. Top: VIX and
conditional standard deviation. Middle: The volatility premium (in units of standard
deviation). Bottom: Scatter plot of option implied and conditional standard deviation.

can be seen in the upper plot in Figure 1, the VIX index generally exceeds the P forecast,

giving a positive difference shown in the middle graph. The evidence is broadly consistent

with the exploratory evidence in Todorov (2007) who uses a much more elaborate model

to forecast the integrated variance.

In the equilibrium model the market price of volatility risk increases proportionally

to the level of the conditional variance. The volatility premium is also increasing in the
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Table 1: Unconditional Volatility Premium

The table presents estimates of the volatility premium in standard deviation and variance units.
The premium in standard deviation units is defined as Ê(V IX) − Std(R̃t)

√
252 and in variance

units Ê(V IX2)−Var(R̃t)252 where R̃t are daily returns on S&P 500. Percentiles of the sampling
distributions are computed by block bootstrap using one year blocks.

Percentiles

mean std 1% 5% 10% 50% 90% 95% 99%

Std units 0.033 0.0044 0.022 0.025 0.027 0.033 0.038 0.04 0.042
Var units 0.015 0.0016 0.012 0.013 0.013 0.015 0.017 0.018 0.019

conditional variance. The bottom plot in Figure 1 is a scatter plot of the level of volatility

and the volatility premium (standard deviation units). The plot suggests that the premium

is increasing on average with the level of volatility, and the correlation between the two

is about 0.4. While the correlation is far from perfect, this crude evidence does indeed

suggest that the premium on average increases when volatility is high, consistent with

the equilibrium model. This is also consistent with the empirical evidence in Bakshi and

Kapadia (2003). They show that delta-hedged gains from writing options increase with

the level of volatility from about 1.7 % of the initial price when annualized volatility is less

than 8%, to more than 22 % when volatility exceeds 18%.

Table 1 assesses the unconditional premium, defined as the difference between the mean

variance and standard deviation implied by the VIX index and simple, annualized estimates

of the unconditional stock return variance and standard deviation. The table reveals that

the premium is substantial: It amounts to 3.3 percentage points per annum in standard de-
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viation units, and 1.5 in variance units. Irrespective of units of measurement, the volatility

premium is significantly positive, as indicated by the lower percentiles of the sampling dis-

tribution given in the rightmost columns of the table. For example, the lower one-percentile

of the sampling distribution is 2.2 annualized percentage points. This suggests that the

premium is economically and statistically significant.

4.2 Estimates of Structural Parameters

Table 2 gives estimates of the structural parameters of the model. First off, the preference

over uncertainty resolution, γ, is 15.8. This is higher than the values calibrated to give

the appropriate equity premium and equity volatility by Bansal and Yaron (2004). It is

almost identical to Bansal, Kiku, and Yaron (2006) where γ is estimated to be 15.12 in the

BY model with stochastic volatility. Bansal, Gallant, and Tauchen (2007) estimate γ to be

7.14 with ψ constrained to 2.

There is considerable debate in the literature over what is the “true” value of intertem-

poral elasticity of substitution, ψ. Most of the literature, including Hansen and Singleton

(1982), Vissing-Jørgensen (2002), Guvenen (2005), produces somewhat conflicting evidence.

The literature is largely working from an identifying assumption that IES can be found

through an instrumental variables regression of consumption growth onto interest rates.

This estimating equation is derived under CRRA utility. It does not apply in the context

of long-run risk models based on KPEZ utility, and it is straightforward to show that if a
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Table 2: Parameter Estimates - Two Factor Model

The table reports posterior means of the preference parameters γ (coefficient determining the
timing resolution of uncertainty), ψ (elasticity of substitution), and parameters determining the
evolution of exogenous state dynamics for consumption, dividends and consumption volatility,
given by

d lnC = µcdt+
√
V dW c,

d lnD = µcdt+ φd

√
V dW c + σd

√
V dW d,

dV = κv(v̄(1 − l1µv) − V )dt +
√
V dW v + ξdN.

Long-run average consumption growth is fixed at 0.02 per annum while average consumption
volatility, v̄, is fixed at 0.032/252 corresponding to an annual consumption growth rate standard
deviation of 0.03. Results shown are the posterior means and standard deviations of model
parameters based on daily data on S&P 500 and the VIX index from 1990-2006 (4286 obs.).

Preference and Risk Parameters

γ ψ (δ − 1) ∗ 100 λv lQ1 µq
v

Posterior Mean 15.8 1.48 0.0185 -42,615 183 1.25e-5
Posterior Std. (0.175) (0.0625) (0.000419) (653.96) (1.80) (6.4e-7)

System Parameters
κv σv σd φd l1 µv r

Posterior Mean 0.00474 0.00019 1.99 3.99 118.6 8.33e-6 1.01
Posterior Std. (3.11e-5) (1.44e-6) (0.129) (0.118) (1.6) (7.79e-8) (0.0173)
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long-run risk model generates the data, the IV regression approach produces biased esti-

mates of IES. Table 2 reports an estimate of ψ = 1.48, while in disagreement with most

of the estimates of IES produced based on CRRA preferences, is not unreasonable. To

see why, note that wealth, defined as the present value of consumption, would actually

increase as a function of volatility in this model if ψ < 1.2 Bansal & Yaron (2004) and

Eraker (2007a) show that values of ψ less than unity produce too high interest rates and

too low equity premia.

Table 2 also gives estimates of the parameters that describe the evolution of the exoge-

nous dividend and volatility processes. Perhaps the most interesting parameter here is the

speed of mean reversion for the volatility process, κv. This is estimated to be 0.00474 which

corresponds to a daily autocorrelation of volatility of about 0.99633. This implies a very

persistent process, and the amount of persistence somewhat exceeds those typically found

in the time-series literature4. My estimate of the volatility persistence implies a half-life of

volatility shocks of about six and a half months. It is well documented that estimates of

volatility persistence increase as sampling frequency is made coarser5. The reason why the

persistence is found somewhat higher than that typically found in daily data is that the

structural model implies a very close tie between the volatility persistence and the size of

the volatility risk premium. In this model, the volatility premium increases uniformly as κv

2This is a standard result in LRR models. See for example Bansal & Yaron (2004), eqn. (A7).
3This estimate obtains as exp(−κv + µvl1).
4Typical autocorrelation estimates range from 0.97 to above 0.99. For example, Eraker, Johannes and

Polson (2003) find κv ranging from about 0.0128 to 0.026. GARCH(1,1) estimates obtained here for the
S&P 500 returns imply an AR(1) coefficient of 0.9915.

5Chacko and Viciera (2005) find volatility half-life ranging of 2 and 16 years using monthly and annual
returns data, respectively.
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decreases. As such, evidence in the data of a high premium is consistent with long-range

dependence.

The estimates of the jump parameters in the model are suggestive of extremely rare,

but large volatility jumps. The jump intensity in the model is proportional to the level of

the volatility process, l1Vt. The estimate of l1 = 118.6 implies that jumps occur on average

every 10th year. When they do occur, the average jump size is more than twice that of

the long-run average volatility. Under the risk neutral measure, jumps occur much more

frequently with an estimated arrival intensity of 183Vt corresponding to a jump every sixth

year, or about 50% more frequently than under the objective measure. Jump sizes are also

about 50% greater under the risk neutral distribution. These risk adjustments potentially

lead to sizable premia for jump risks in options markets.

4.3 Other Asset Price Implications

Table 3: Asset Price Implications

The table examines key moments of observed and model implied asset market
data. The p-value is a model based bootstrap giving the probability of
observing a sample path with the same moment as computed in the data.

data model p-value

Equity Premium 5.9 6.9 0.62
return std 0.99 1.10 0.36
Corr(△V, r) -0.72 -0.66 0.16
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Table 3 computes key asset price characteristics generated by the equilibrium model.

These numbers were computed by simulating returns and volatility data using the param-

eter estimates in Table 2. The table reveals that the equity premium generated by the

model is 6.9 %, which compares to 5.9% in the data over the 1990-2006 sample period.6

The 6.9% equity premium is close to the average excess return of about 7.5% computed for

a longer sample period in the US market. The equilibrium model produces a population

standard deviation of stock returns which slightly exceeds the sample standard deviation.

The equilibrium model produces a correlation between changes in volatility and changes

in stock prices averaging to -0.66. This is somewhat lower than in the data for which the

correlation is -0.72 over the sample period. This difference is not statistically significant.

Neither are the differences between any of the other model implied moments and the ob-

served data. As such, one cannot reject the null-hypothesis that the model is in fact the

true data-generating process by looking at these moment-based tests by themselves. While

slightly lower than in the data, the -0.66 correlation between volatility is really a substantial

feat. The correlation is entirely an endogenous equilibrium effect where stock prices fall

in response to increases in uncertainty. I am unaware of any other equilibrium model that

comes even close in substantiating the whole asymmetric volatility relationship.
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Table 4: Volatility Premium. In-Sample Evidence

The table computes the posterior means and standard deviation of the two
measures of the unconditional premium,

V P = αq
v + βq

vÊV̂t − αp
v − βp

v ÊV̂t

(variance units) and

SP = Ê

√

αq
v + βq

v V̂t − Ê

√

αp
v − βp

v V̂t

(standard deviation units) for the in-sample extracted estimate V̂t of macro-
volatility. Ê is the sample mean, 1

T

∑

t.

VP SP
Data 0.015 0.033

Model
Posterior Mean 0.014 0.038
Posterior Std. 0.001 0.003
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4.4 The Volatility Premium

Turning to the focal point of this paper, table 4 reports estimates of the unconditional,

average volatility premium based on the in-sample parameter estimates and the estimated

volatility path. The table shows that the volatility premium is estimated to be fairly

close to that observed in the data. Using variance units, the model produces a variance

premium of 0.014 (posterior mean) which compares to 0.015 in the data. In units of

standard-deviation, the model produces 0.038 which surprisingly exceeds the unconditional

number of 0.033 computed in the data. This may be due to the fact that the number

computed from the data is based on a different estimator than the theoretical, model

implied numbers given in table 4. In constructing a frequentist test of statistical significance

of the difference in the computed premium, we can compare the model implied premium

in table 4 to the percentiles of the sampling distribution in table 1. Using variance units,

we find that the model-implied 0.014 lies above the lower 10th percentile, rendering the

difference insignificant by a one-sided test. Similarly, the 0.038 model-implied difference

in the standard deviations fall right on the 90th percentile of the sampling distribution in

table 1. Neither measure of the premium, therefore, can be concluded to be statistically

different from the one observed in the data at high levels of confidence.

6The 5.9% refers to the total return on the S&P 500 index, as measured by the S&P 500 total return
index which, unlike the widely quoted S&P 500 index (SPX), includes dividends. The average return
(capital gains only) on the S& P 500 index is about 3.7% above the risk free rate per year.
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4.5 Risk Premia

It is common in the no-arbitrage literature to specify the exogenous processes driving mar-

ket prices of risk to allow various risks. Market prices of risk have the interpretation of

being the expected instantaneous reward per unit of standard deviation, or a continuously

computed Sharpe-ratio. In the equilibrium framework, market prices of risks are generated

endogenously from the preferences and the parameters that determine the dynamic behav-

ior. The annualized market price of risk for consumption in the equilibrium model is given

by γ
√
V
√

252 which is about 0.47 on average in my model.

It is of course particularly interesting to compute the reward to volatility risk. This

implicitly will determine whether the model can explain seemingly high Sharpe ratios to

issuers of equity options. It is straightforward and sensible to compute the market-price-

of-risk for the locally normally distributed shocks to the volatility process. It is λvσv

√
V .

For jumps, accordingly [E(ξdN) − EQ(ξdN)]/Stdt(ξdN) is the reward to a hypothetical

investment in the jump part of the volatility process.7

Figure 2 plots the reward-to-risks for the diffusive volatility part, the jump part, and

the total risks. The latter can be interpreted as the instantaneous Sharpe-ratio earned by

an investor who invests directly in volatility, either by buying options or volatility futures

contracts. The premium for diffusive risks fluctuates between -0.09 to -0.49, the premium

7Since the reward-to-risk is defined in terms of the first two moments it does not adequately reflect the
risk-return tradeoff for investors who have more general preferences than mean-variance utility since the
jump sizes are non-normally distributed.

32



1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
−1

−0.5

0

Ju
m

ps

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
−0.8

−0.6

−0.4

−0.2

0

D
iff

us
io

n

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
−1

−0.5

0

T
ot

al

Figure 2: Top:Reward to variability for volatility jumps. Middle: Market price of diffusive
volatility risk. Bottom: The total reward to volatility (diffusive+jump) risk.

for jump risk fluctuates between -0.16 and -0.94, and the total premium fluctuates between

-0.15 and -0.85. It is reasonable that the jump risks carry a higher premium because of

the non-normality of jumps in the volatility process. The average annual total reward-

to-variability is only about -0.35. This is surprisingly small, particularly in light of the

empirical evidence in the options literature that the investors who sell volatility earn Sharpe

ratios between one half and one. There are three possible explanations to this. First, it

could be that the empirical evidence cited is based on returns over a period in which the
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rewards-to-variability was higher than the sample period used here. Second, it could be

that the returns to sellers of options are upwardly biased if the volatility went down on

average over the sampling period because if volatility goes down, a short volatility position

essentially produces a return equal to the volatility premium plus returns generated by

the negative of the directional move in the volatility process. Third, the options return

literature uses data that typically exclude extreme market events such as the crash of ’87

and the ’08 financial crisis leading to an inherent peso problem in the sample selection.

4.6 Option Returns

Are high average returns on short option positions reported in the literature consistent

with equilibrium? I present two pieces of evidence to shed light on this. First, Figure 3

plots implied Black-Scholes volatility for one month options computed using the equilibrium

model.8 The figure illustrates that the implied volatility computed from the model is largely

consistent with those observed empirically. First, there is a pronounced smile. Second, the

highest implied volatilities obtain for the low strikes. This is consistent with the well known

fact that out-of-the-money put options are very expensive.

Table 5 reports simulated returns and Sharpe-ratios from one-month long investments

in options under different volatility scenarios. The purpose is to see if the return patterns

implied by the model are consistent with return and risk patterns suggested in the empirical

8The implied volatilities were computed by equating the Black-Scholes model price to the theoretical
equilibrium price using the equilibrium interest rate and dividend yield. Details on how to compute the
equilibrium options prices can be found in Eraker & Shaliastovich (2008).
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Table 5: Simulated Option Returns

The table reports simulated returns and Sharpe ratios on option positions. The simulations
assume that the option is traded at the theoretical price, Ct, computed from the equilibrium
model using estimated parameters in table 2. Returns are arithmetic returns assuming the option
is held until expiration.

mean returns Sharpe ratios
Strike Calls Puts Straddles Calls Puts Straddles

High initial volatility

0.85 0.08 -0.73 0.06 0.16 -0.20 0.13
0.9 0.10 -0.60 0.05 0.15 -0.22 0.09
0.95 0.12 -0.43 0.01 0.12 -0.24 0.01
1 0.13 -0.29 -0.09 0.09 -0.23 -0.13
1.05 0.12 -0.19 -0.14 0.05 -0.21 -0.21
1.1 0.07 -0.12 -0.12 0.01 -0.20 -0.20
1.15 -0.08 -0.08 -0.08 -0.01 -0.19 -0.19

Medium initial volatility

0.85 0.03 -0.71 0.025 0.09 -0.13 0.07
0.9 0.04 -0.61 0.024 0.08 -0.13 0.05
0.95 0.05 -0.39 -0.004 0.06 -0.15 -0.01
1 0.03 -0.20 -0.092 0.02 -0.15 -0.13
1.05 -0.05 -0.09 -0.093 -0.02 -0.12 -0.14
1.1 -0.34 -0.05 -0.045 -0.05 -0.11 -0.11
1.15 -0.94 -0.03 -0.032 -0.23 -0.10 -0.11

Low initial volatility

0.85 0.01 -0.77 0.00 0.01 -0.10 -0.00
0.9 0.01 -0.69 -0.00 0.01 -0.11 -0.02
0.95 -0.00 -0.41 -0.03 -0.01 -0.12 -0.06
1 -0.07 -0.13 -0.10 -0.06 -0.09 -0.14
1.05 -0.32 -0.02 -0.03 -0.09 -0.04 -0.05
1.1 -0.94 -0.01 -0.01 -0.30 -0.03 -0.03
1.15 -1 -0.00 -0.00 -Inf -0.03 -0.03
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Table 6: Simulated Delta-Hedged Option Returns

The table reports simulated returns and Sharpe ratios on option positions and short stock posi-
tions. The positions are short delta number of futures contracts on the stock at initiation.

mean returns Sharpe ratios
strike Calls Puts Straddles Calls Puts Straddles

High initial volatility

0.85 -0.01 -0.61 -0.02 -0.16 -0.17 -0.17
0.9 -0.02 -0.43 -0.05 -0.16 -0.17 -0.17
0.95 -0.05 -0.23 -0.09 -0.16 -0.17 -0.16
1 -0.11 -0.11 -0.11 -0.15 -0.15 -0.15
1.05 -0.23 -0.04 -0.07 -0.13 -0.14 -0.14
1.1 -0.43 -0.01 -0.02 -0.11 -0.12 -0.11
1.15 -0.86 -0.00 -0.00 -0.09 -0.13 -0.11

Medium initial volatility

0.85 -0.00 -0.71 -0.01 -0.11 -0.13 -0.12
0.9 -0.01 -0.56 -0.02 -0.12 -0.13 -0.13
0.95 -0.03 -0.29 -0.06 -0.14 -0.15 -0.14
1 -0.11 -0.10 -0.10 -0.14 -0.14 -0.14
1.05 -0.29 -0.02 -0.03 -0.12 -0.13 -0.12
1.1 -0.69 0.00 -0.00 -0.10 -0.13 -0.11
1.15 -1.40 0.00 0.00 -0.22 -0.38 -0.30

Low initial volatility

0.85 0.00 -0.68 -0.00 -0.06 -0.08 -0.07
0.9 -0.00 -0.59 -0.01 -0.07 -0.08 -0.08
0.95 -0.02 -0.34 -0.04 -0.10 -0.10 -0.10
1 -0.10 -0.09 -0.10 -0.12 -0.13 -0.12
1.05 -0.40 -0.00 -0.01 -0.10 -0.12 -0.11
1.1 -1.00 0.00 0.00 -0.22 -0.33 -0.28
1.15 -1.10 0.00 0.00 -0.32 -0.45 -0.39
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options returns literature. I distinguish between low, medium, and high initial volatility,

Vt.

Put options lose money on average irrespective of the initial volatility state. Far out-

of-the-money puts (strike=0.85) lose between 71 and 77 percent of their value if held until

expiration. This illustrates that the risk premium imbedded in prices of out-of-the-money

puts comprise the largest component of the price. Driessen and Maenhout (2006) report

weekly excess returns for at-the-money puts to be averaging -6% which corresponds to our

weekly return of -20%/4=-5% for the average volatility regime in the equilibrium model.

Furthermore, they report weekly returns on 4% and 6% out-of-the-money puts to be -7.6

and -8.6%. This compares to weekly returns of about -10% in the equilibrium model. Thus,

the empirical evidence in Driessen and Maenhout (2006) matches the theoretical returns in

our model quite closely.

Call options have a more complicated return pattern. As seen int Table 5, in-the-

money (ITM) calls tend to yield positive returns while out-of-the-money calls yield negative

returns. The distinction between an ITM and OTM call is that the former has a higher

delta, representing an investment with high directional stock price risk. For ITM calls, the

positive beta leads to a risk premium that swamps the negative premium stemming from

the volatility exposure. The OTM call, conversely, has less directional price exposure and

most of its premium is negative risk stemming from the volatility premium. The results

are consistent with tabulated returns for call options reported in Driessen and Maenhout
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(2006) who find that out-of-the-money calls have higher positive returns than at-the-money

calls.

Table 5 also reports monthly simulated Sharpe ratios for the options, as well as simulated

returns and Sharpe ratios on straddle positions. For at-the-money straddles, monthly

Sharpe ratios are about -0.14 irrespective of volatility regimes, corresponding to annualized

Sharpe ratios of about -0.49. This is about half of the annualized Sharpe ratios for crash

protected straddles found in Coval and Shumway (2001), and also somewhat lower than

Sharpe ratios for at-the-money straddles reported by Driessen and Maenhout (2006) which

can be inferred to be about -0.72. It is almost identical to the Sharpe ratio reported in

Eraker (2007b) of 0.46 for an investor who sells options at the market bid price. Notice that

investors who sell straddles with strikes slightly higher than the initial stock price ($1), will

earn Sharpe ratios of about 0.2, or about 0.69 annualized when the initial volatility is high.

Table 6 offers a slightly different perspective on the returns available from selling options.

This table considers returns on options positions where the investor, at the same time as

buying the options, simultaneously sells delta number of forward contracts on the stock.9

In economies such as the theoretical equilibrium economy considered here, where jumps

and stochastic volatility affect the stock and options prices, delta-hedging does not provide

a perfect hedge but may still eliminate some of the directional price exposure in options

positions.

9Delta is the partial derivative of the theoretical options price with respect to the initial stock price.
In the seminal Black-Scholes analysis, a continuously delta-hedged options position perfectly replicates the
payoff on the option. Here deltas are computed using the theoretical model price.
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The delta-hedged portfolio returns in Table 6 provide some interesting comparisons to

the non-hedged ones in table 5. For example, while returns to calls in the high and medium

volatility regimes are positive in table 5, they are negative in table 6. This suggests that

the reason why buying call options is profitable is simply that they provide a positive

exposure to stock price or market risk. Thus for example, while buying a naked 10% in-

the-money call yields returns of 10%,4% and 1 % across volatilities, one obtains -2%,-1%

and 0% returns when simultaneously selling delta (close to one in this case) shares of the

underlying.

An interesting fact of table 6 is that the average returns and thus the corresponding

Sharpe ratios are uniformly negative. Sharpe ratios for at-the-money straddles are between

-12 and -14 percent (-42 to - 52% annualized). This is close to what was reported in 5

because at-the-money straddles are approximately market neutral so that the delta-position

is close to zero.

So how do the simulated options returns compare to the returns seen in real options

data? Table 7 reports average holding period returns for 30 day buy-and-hold positions in

S&P 500 index options. These results are comparable to those in Table 5 for the model

simulations. As seen, the numbers in Table 7 are quite similar to the simulated numbers

in Table 5. In particular, the estimated average returns to put options are quite similar

in the model simulations as in the observed data. For example, 85-90% out of the money

puts have average returns of -70% per month in our sample whereas the simulated data

implies average returns in the -60 to 69% range for the various initial volatility scenarios.
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Table 7: S&P 500 Option Returns

The table reports returns and Sharpe ratios on option positions using S&P 500 options data.
Returns are computed from buy and hold positions with thirty calendar days until expiration
using daily closing prices from September 1996 to May of 2011.

Mean returns Sharpe Ratios
Strike Calls Puts Straddles Calls Puts Straddles

Average Returns

0.85 -0.03 -0.78 -0.03 -0.10 -0.39 -0.12
0.90 -0.01 -0.70 -0.02 -0.04 -0.33 -0.07
0.95 -0.03 -0.50 -0.06 -0.06 -0.28 -0.12
1.00 -0.04 -0.11 -0.07 -0.04 -0.08 -0.10
1.05 -0.36 0.03 -0.00 -0.17 0.02 -0.01
1.10 -0.77 0.06 0.05 -0.32 0.09 0.07
1.15 -1.00 0.05 0.04 N/A 0.10 0.08

# observations

0.85 1348 1351 1348
0.90 1803 1809 1803
0.95 2288 2289 2288
1.00 2711 2711 2711
1.05 2188 2177 2177
1.10 1121 1121 1121
1.15 698 698 698
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At-the-money straddle returns averaged -7% in the data and between -9 and -10% in the

simulations. Overall, the return patterns are qualitatively similar in the data and in the

model.

5 Out-of-Sample during the 2008 Financial Crisis

The 2008 financial crisis constitutes the most dramatic financial market event since the

Great Depression. While significant Wall Street companies failed, stock market volatility

reached extreme levels and stock prices dropped significantly. All the results of this paper

reported so far were computed prior to these events. The 2008 financial crisis therefore

serves as the ultimate out-of-sample test for our model.

The asset pricing model considered here makes two basic predictions: first, it suggests

that the volatility premium is positive and increasing in the level of spot volatility. Thus,

we expect to see the premium increase as market volatility virtually exploded in the Fall of

2008. Second, it predicts that a large increase in volatility, ether driven by sudden jumps

or by a sequence of smaller (Brownian) shocks, should be associated with a large negative

stock price reaction. I examine these predictions in turn.
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Table 8: Volatility Premium. Out-of-Sample Evidence

The table reports realized and option implied volatility estimates for the out
sample period Jan 2006 - Sept. 2009. Vari(R̃) and Stdi(R̃) for i = P are
annualized estimates of integrated variance/ standard deviation and i = Q is
the option implied counterpart. The premium is defined VarQ(R̃)−VarP (R̃)
where R̃ is one month log-return. The t-statistics test the null hypothesis
that the differences between the model and data are zero and are computed
using Newey-West standard errors.

Variance Units

VarP (R̃) VarQ(R̃) premium (data) premium (model) t-stat
0.0914 0.0958 0.00444 0.0369 -1.66

Std. dev. Units

StdP (R̃) StdQ(R̃) premium (data) premium (model) t-stat
0.259 0.277 0.0177 0.0468 -1.84

5.1 Volatility Premium Out-of-Sample

In order to evaluate the model’s prediction for stock prices throughout the out-of-sample

period, consider the following basic facts: At the beginning of 2007, the VIX index was

near its historic low, hitting 10% on several days during the first two months of the year.

The S&P 500 was near its all time high during 2007January, and hit its all time-high of

1565 two months later. Towards the end of August 2009, the VIX index hovered around

19-20% - almost exactly its historical average. Less than two months later, it hit 80.

Table 8 presents out-of-sample evidence on the volatility premium. Since the model

predicts that the premium should increase proportionally to the level of spot volatility, the

sharp increase in volatility observed in the out-of-sample period naturally leads to a higher
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model induced premium. In terms of standard deviation, the model suggests that the

premium should have been 4.68% on average over the out-of-sample period. This exceeds

the 3.3% reported for the in-sample period. Yet, the data suggest that the premium was

only 1.77% on average, implying that the premium decreased during the crisis. To see how

the premium presumably was decreased during the crisis, consider figure 4 which depicts

the conditional annualized variance premium. The premium is defined as 12(VarQ
t (rt:t+22)−

VarP
t (rt:t+22)) (dots), along with the model implied premium (solid line). Panel A in this

figure clearly shows how the “data” fall below the model predicted line as the spot volatility

(on the horizontal axis) increases.

To understand why the model may over-predict the premium throughout the crisis,

consider the last term,

VarP
t (rt:T ) =

∫ T

t

EtVsds =
1

κv

[

(1 − eκT−t)(Vt − θ) + θ(T − t)
]

where θ = E(V ) is the unconditional variance. This expression shows that the conditional

variance depends heavily on the value of κ and it is easy to see that as κ increases, the

conditional variance VarP
t (rt:T ) approaches E(V )(T − t). Panel B in figure 4 shows what

happens to the premium if we inflate κ from its estimated value of 0.00474 to 0.09. As

seen in figure 4 B, the “data” line up almost perfectly with the model. The economic

interpretation of this is the following: The crisis led to extremely high levels of volatility,

but market participants expected these volatility levels to persist for a relatively short time.

44



0 0.5 1 1.5 2 2.5

x 10
−3

−0.4

−0.2

0

0.2

0.4

A : Variance premium out−of−sample

0 0.5 1 1.5 2 2.5

x 10
−3

−0.2

0

0.2

0.4

0.6

B : Variance premium implied by κ=0.09 vs model implied

Figure 4: Out-of-sample variance premium.

What the data seem to suggest therefore, is that during high volatility regimes, volatility

reverts faster to its long-run mean. In other words, this particular piece of evidence suggests

that mean-reversion in financial market volatility is non-linear in the level of volatility.

Further research on the topic of volatility risk premia should seek to generalize the dynamic

specification for the volatility process and go beyond the affine class.10

10The value of 0.09 was calibrated rather than estimated. I am unaware of statistical evidence suggesting
that volatility reverts that quickly and non-linearly from high levels. Some papers, including Bates (2000)
and Chernov, Gallant, Ghysels, and Tauchen (2003) however have suggested that volatility should be
modeled by two separate factors, one of which reverts quickly. These models are in principle consistent
with implied rapid mean reversion.
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Figure 5: The figure shows the S&P 500 (dotted) vs the share price reaction predicted from
the change in volatility.

5.2 Stock Returns

Next, we turn to the second issue of essence in this paper and we ask: can the sharp increase

in volatility during the crisis “explain” the large negative stock returns over this period?

In other words, how much of the negative stock returns observed over the sample period

were due to an increase in risk premium? To shed light on this, I compute the return to

the stock market conditional upon the realized volatility path as implied by the VIX index.
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Figure 5 plots the expected stock price conditional upon the VIX, along with the actual

index11 Although the correlation is not perfect, the two time series share some strikingly

common patterns:

• The predicted and actual stock price reactions are roughly similar. The model implies

close to a 61% drop from the initial value compared to a 52% market decline.

• The model implies a market bottom on 20/11/2008 while the actual bottom occurred

on 03/03/2009

The difference between what the market did and the model prediction is evident over the

Dec 2008 - March 2009 period. Since volatility went down dramatically, prices should have

increased but instead they decreased. The fact that the actual stock prices moved opposite

of what is predicted by the decrease in volatility is interpretable as a negative shock to

aggregate consumption in the model. Thus, to see if the model is consistent with the

data we need to consider the actual macro economy over the Jan 2008 - March 2009. The

US economy contracted 5.4 and 6.4% in the last and first quarters of 2008 and 2009 in

what is widely regarded to be the worst recession since the Great Depression. Our model

predicts that any change in the stock prices that is not volatility driven should be due

to real dividend shocks. In looking at figure 5 we see that the eventual gap between the

actual stock price and the volatility-predicted stock price is about 20%. Thus, the model is

11Using 7, the conditional expected stock return is computed as r0,t = Bv,d(Vt −V0) = Bv,d/βv(V IX
2
t −

V IX2

0
). Both series are normalized to P0 = 1.
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consistent with the data if the aggregate corporate losses were about 20% over this period,

which seems plausible.

6 Concluding Remarks

This paper studies the large difference between the actual and options-implied volatility

of stock returns. The difference between the two, the so-called volatility premium, is

known to generate large returns to issuers of volatility-sensitive assets such as options. The

theoretical equilibrium model considered in this paper does indeed produce a difference

in the two volatility measures on the same order of magnitude as observed in the data.

The key to constructing an equilibrium model in which volatility shocks have a sufficiently

high market price of risk to generate the premium is the use of long-run risk equilibrium,

coupled with a highly persistent volatility process.

The model delivers very high options returns, especially when volatility is high. This

does not imply that investors who sell volatility earn risk-reward ratios that are substan-

tially above those of other asset classes. The problem facing investors is that trading

volatility is very risky. Thus, even if the mean returns on certain options classes are very

high, so are the risks. The empirical options literature reports Sharpe ratios ranging from

about one half to one. The model, at estimated parameters, implies an unconditional

Sharpe ratio of about 0.48 for selling volatility. Thus, the model delivers a Sharpe ra-

tio in the low range of what has been found in the empirical studies of options returns.
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There are two possible reasons why some studies may have found higher Sharpe ratios.

First, there is significant sampling variability in these reward-to-risk ratios because they

are estimated over relatively short sample periods. Thus, the occurrence, or lack thereof,

of significant market turmoil will influence the estimates. Second, it is possible that the

model underestimates the premium, or overestimates the risks involved.

There are several stylized facts about volatility which is not incorporated into the model.

First of all, several studies of the dynamics of stock market volatility suggest that volatility

has a long-run-component. For example, Chacko and Viciera (2005) find that volatility

is significantly more persistent when estimated using coarsely sampled data. Models such

as those of Bates (2000) and Chernov, Gallant, Ghysels, and Tauchen (2003) provide an

approximation to long memory models by specifying volatility as a two-factor process.12

Clearly, by building models with higher long-run persistence in volatility, it is possible to

attribute even higher risk premia to volatility shocks.

There are several ways in which one can argue that the current model does not yield a

realistic representation of either the macro-economic environment or the asset price impli-

cations. For example, in this model the term structure of interest rates depends only on the

macro-volatility factor. It is easy to add additional factors such as expected consumption

growth, or expected inflation growth. As for the macro-economic realism, a few notes are in

order. First, there is significant evidence of time-variation in the volatility of real consump-

12The term long-memory typically refers to processes where the autocorrelation function decays at a
slower rate than exponential, as in one-factor models. Two-factor models asymptotically decay at an
exponential rate. Models of fractionally integrated variance have slower decay rates.
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tion growth. For example, using annual consumption growth data collected over a period

of a hundred and fifteen years, GARCH model estimates indicate substantial persistence

and time variation in the volatility13. It is possible to obtain volatility risk premia that

are higher in models that have either multiple volatility factors, or have additional risk

factors which depend linearly or non-linearly on volatility as in, for example, the Bansal

& Yaron (2004) model. The possibility of constructing a unified consumption based pric-

ing model that successfully explains the conditional movements in macro time-series and

different financial assets (stocks, bonds, and derivatives) remains an extremely challenging

but interesting agenda for future research.

13While not reported in detail here, I fitted GARCH (1,1) to annual consumption data and compared
the fitted values to data on annual real consumption growth simulated from the model. The first order
volatility persistence in the actual data was found to be about 0.96 which compares to 0.3 in the simulated
data. Sampling variability is substantial, making inference difficult.
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Appendix

A VIX as an Approximation to Risk Neutral Volatil-

ity

The VIX index is widely believed to be a model free estimate of the option-implied standard

deviation of logarithmic returns. The squared VIX is computed as a discrete approximation

to

V IX2 =
2erT

T

∫

∞

0

Q(T,K)

K2
dK (23)

where Q(T,K) = min(P (K), C(K)) is the minimum of the Put and Call prices with strike

K. In recent work, Martin (2011) points out that the VIX index is itself does not equal

the variance of the log-return under the risk neutral measure when the return distribution

departs from log-normality. In particular, Martin shows that the squared VIX depends on

higher order cumulants in addition to the variance.

So how large is the error documented by Martin? Figure 6 plots the theoretical variance

of the one month log-stock return (annualized), along with the theoretical VIX index as

computed through equation (23). The plot shows model-implied quantities. The theoretical

VIX index is computed from theoretical options prices from my model using parameter

values in Table 2 over a fine grid of strike prices. Since the VIX index is itself a function of

macro-variance Vt, the figure computes the errors across a grid of initial values of Vt. The
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Figure 6: VIX vs. actual risk neutral variance using the theoretical option pricing model.

figure shows that the errors are approximately constant as a percentage of the VIX level.

The errors range between -4.1% and -4.2% of the VIX value. For example, when the VIX

is at 20, it is under-estimating the true risk neutral variance which is about 20.82. The

errors are (approximately) a constant multiple of the level of the VIX index.
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Thus, two insights emerge from this exercise. The first is that the error can easily be

accounted for using a model. The second is that is that the error in the VIX is indeed

small. To put it in perspective, consider the fact that the annualized standard deviation

of the daily percentage changes in the VIX index itself is about 100%. Thus, the error is

swamped by volatility. Visually, this can be represented by plotting the actual VIX index

alongside with the corrected one, as in the bottom half of figure 6. As can be seen the two

are virtually indistinguishable.

These conclusions are based on a specific model. To understand how our particular

model impacts the computation of the error, consider instead the jump diffusion model of

Merton (1976). Depending on parameter values, Merton’s model will give errors ranging

from about negative 1.7% to 3.4%. Thus, Merton’s model yields a smaller but still negative

bias. The smaller magnitude of bias in Merton’s model is likely due to the behavior of the

left tail of the risk neutral density which is decaying at a more rapid rate in Merton’s model

than the model considered here.
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