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Do Stock Prices and Volatility Jump? Reconciling
Evidence from Spot and Option Prices

BJØRN ERAKER∗

ABSTRACT

This paper examines the empirical performance of jump diffusion models of stock
price dynamics from joint options and stock markets data. The paper introduces a
model with discontinuous correlated jumps in stock prices and stock price volatility,
and with state-dependent arrival intensity. We discuss how to perform likelihood-
based inference based upon joint options/returns data and present estimates of risk
premiums for jump and volatility risks. The paper finds that while complex jump
specifications add little explanatory power in fitting options data, these models fare
better in fitting options and returns data simultaneously.

THE STATISTICAL PROPERTIES of stock returns have long been of interest to finan-
cial decision makers and academics alike. In particular, the great stock market
crashes of the 20th century pose particular challenges to economic and statisti-
cal models. In the past decades, there have been elaborate efforts by researchers
to build models that explicitly allow for large market movements, or “fat tails”
in return distributions. The literature has mainly focused on two approaches:
(1) time-varying volatility models that allow for market extremes to be the out-
come of normally distributed shocks that have a randomly changing variance,
and (2) models that incorporate discontinuous jumps in the asset price.

Neither stochastic volatility models nor jump models have alone proven en-
tirely empirically successful. For example, in the time-series literature, the
models run into problems explaining large price movements such as the October
1987 crash. For stochastic volatility models, one problem is that a daily move
of −22% requires an implausibly high-volatility level both prior to, and after
the crash. Jump models on the other hand, can easily explain the crash of 1987
by a parameterization that allows for a sufficiently negative jump. However,
jump models typically specify jumps to arrive with constant intensity. This as-
sumption poses problems in explaining the tendency of large movements to
cluster over time. In the case of the 1987 crash, for example, there were large
movements both prior to, and following the crash. With respect to option prices,
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this modeling assumption implies that a jump has no impact on relative option
prices. Hence, a price jump cannot explain the enormous increase in implied
volatility following the crash of 1987. In response to these issues, researchers
have proposed models that incorporate both stochastic volatility and jumps
components.

In particular, recent work by Bates (2000) and Pan (2002) examines combined
jump diffusion models. Their estimates are obtained from options data and joint
returns/options data, respectively.1 They conclude that the jump diffusions in
question do not adequately describe the systematic variations in option prices.
Results in both papers point toward models that include jumps to the volatility
process.

In response to these findings, Eraker, Johannes, and Polson (EJP) (2000) use
returns data to investigate the performance of models with jumps in volatility
as well as prices using the class of jump-in-volatility models proposed by Duffie,
Pan, and Singleton (2000) (henceforth DPS). The DPS class of models general-
izes the models in Merton (1976), Heston (1993), and Bates (1996). The results
in EJP show that the jump-in-volatility models provide a significantly better fit
to the returns data. EJP also provide decompositions of various large market
movements which suggest that large returns, including the crash of 1987, are
largely explained ex post by a jump to volatility. In a nutshell, the volatility-
based explanation in EJP is driven by large subsequent moves in the stock
market following the crash itself. This clustering of large returns is inconsis-
tent with the assumption of independently arriving price jumps, but consistent
with a temporarily high level of spot volatility caused by a jump to volatility.
Overall, the results in EJP are encouraging with respect to the models that
include jumps to volatility. In the current paper, therefore, we put the volatility
jumping model to a more stringent test and ask whether it can explain price
changes in both stock markets and option markets simultaneously.

The econometric technique in EJP is based on returns data only. By contrast,
the empirical results presented in this paper are based on estimates obtained
from joint returns and options data—an idea pursued in Chernov and Ghysels
(2000) and Pan (2002). This is an interesting approach because even if option
prices are not one’s primary concern, their use in estimation, particularly in
conjunction with returns, offers several advantages. A primary advantage is
that risk premiums relating to volatility and jumps can be estimated. This
stands in contrast to studies that focus exclusively on either source of data.
Secondly, the one-to-one correspondence of options to the conditional returns
distribution allows parameters governing the shape of this distribution to po-
tentially be very accurately estimated from option prices.2 For example, EJP
report fairly wide posterior standard deviations for parameters that determine

1 Stochastic volatility option pricing has been considered in Hull and White (1987), Wiggins
(1987), Scott (1987), Chesney and Scott (1989), Melino and Thornbull (1990), Stein and Stein
(1991), and Amin and Ng (1993) among others.

2 A number of papers obtain non-parametric estimates of return distributions using options. See
Jackwerth and Rubenstein (1996), Dumas, Fleming, and Whaley (1998) and among others.
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the jump sizes and jump arrival intensity. Their analysis suggests that estima-
tion from returns data alone requires fairly long samples to properly identify
all parameters. Hopefully, the use of option prices can lead to very accurate
estimates, even in short samples. Moreover, the use of option prices allows, and
in fact requires, the estimation of the latent stochastic volatility process. Since
volatility determines the time variation in relative option prices, there is also
a strong potential for increased accuracy in the estimated volatility process.
Finally, joint estimation also raises an interesting and important question: Are
estimates of model parameters and volatility consistent across both markets?
This is the essential question to be addressed in this paper.

Previously, papers by Chernov and Ghysels (2000), and Pan (2002) have pro-
posed GMM-based estimators for joint options/returns data using models sim-
ilar to the ones examined here, but without the jump to volatility component.
In this paper we develop an approach based on Markov Chain Monte Carlo
(MCMC) simulation. MCMC allows the investigator to estimate the posterior
distributions of the parameters as well as the unobserved volatility and jump
processes. Recent work by Jacquier and Jarrow (2000) points to the importance
of accounting for estimation risk in model evaluation. This is potentially even
more important in our setting because the parameter space is so highly di-
mensional. For example, one practical implication of MCMC is that the filtered
volatility paths obtained by MCMC methods tend to be more erratic than esti-
mates obtained by other methods (see Jacquier, Polson, and Rossi (1994)). This
is important because previous studies find that estimates of the “volatility-of-
volatility” parameter governing the diffusion term in the volatility process, is
too high to be consistent with time-series estimates of the volatility process.

The empirical findings reported in this paper can be summarized as follows.
Parameter estimates obtained for the (Heston) stochastic volatility model as
well as the (Bates (1996)) jump diffusion with jumps in prices, are similar to
those in Bakshi, Cao, and Chen (1997). In particular, our estimates imply a jump
every other year on average, which compared to estimates in EJP from returns
data alone, is very low. The volatility-of-volatility estimates are higher than
those found from returns data alone in EJP. However, we do not conclude that
they are inconsistent with the latent volatility series. Our posterior simulations
of the latent volatility series have “sample volatility-of-volatility” that almost
exactly matches those estimated from the joint returns and options data. This
evidence contrasts with the findings of model violations reported elsewhere.

Evidence from an in-sample test reported in this paper shows surprisingly
little support for the jump components in option prices. The overall improve-
ment in in-sample option price fit for the general model with jumps in both
prices and volatility, is less than 2 cents relative to the stochastic volatility
model. There is some evidence to suggest that this rather surprising finding
can be linked to the particular sample period used for estimation. In particular,
we show that the models tend to overprice long dated options out-of-sample—a
finding that can be linked to the high volatility embedded in options prices dur-
ing the estimation period. If the mean volatility parameter is adjusted to match
its historical average, out-of-sample pricing errors drop dramatically, and the
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jump models perform much better than the SV model. The option pricing mod-
els also seem to perform reasonably well whenever the calculations are based
on parameter estimates obtained using only time-series data of returns on the
underlying index.

The jump models, and particularly the jump-in-volatility model, are doing a
far better job of describing the time-series dimension of the problem. In par-
ticular, the general model produces return residuals with a sample kurtosis
of a little less than four (one unit in excess of the hypothesized value under
the assumed normal distribution). However, all models in question produce too
heavily tailed residuals in the volatility process for it to be consistent with its
assumed square root, diffusive behavior. This obtains even when the volatility
process is allowed to jump. This model violation is caused primarily by a se-
quence of large negative outliers following the crash of 1987, and corresponds
to the fall in the implied spot volatility process following the huge increase
( jump) on the day of the crash. Since the jump-in-volatility model allows for
positive jumps to volatility, it does explain the run-up in relative option prices
on the day of the crash, but it has problems explaining the subsequent drop. In
conclusion, the jump-in-volatility model does improve markedly on the simpler
models, but its dynamics do not seem sufficiently general to capture variations
in both returns and options markets simultaneously.

The rest of the paper is organized as follows: In the next section, we present
the general model for the stock price dynamics as formulated in Duffie et al.
(2000) special cases of this model, and discuss implications for option pricing.
Section II discusses the econometric design and outlines a strategy for obtaining
posterior samples by MCMC. Section III presents the data, while Section IV
contains the empirical results. Section V summarizes the findings and suggests
directions for further investigation.

I. Models and Pricing

We now outline the diffusion and jump dynamics that form the basis for the
option pricing analysis in Duffie et al. (2000). Under the objective probability
measure, the dynamics of stock prices, S, are assumed to be given by

dSt

St
= adt +

√
VtdWS

t + dJS
t , (1)

dVt = κ(θ − Vt)dt + σV

√
VtdWV

t + dJV
t , (2)

where V is the volatility process. The Brownian increments, dWS and dWV

are correlated and E(dWS
t dWV

t ) = ρdt. The parameter a measures the expected
return.3

The jump term, dJi
t = Zi

tdNi
t , i = {S, V}, has a jump-size component Zt and

a component given by a Poisson counting process Nt. In the case of a common

3 Attempts to fit a more elaborate drift under the objective measure were undertaken in EJP
and shown to be unimportant.
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Poisson process, NV
t = NS

t , jump sizes ZS
t and ZV

t can be correlated. The specifi-
cation of jump components determines the models to be considered. We discuss
the various possible specifications and their implications for option prices next.

A. SV Model

The basic stochastic volatility (SV) model with a square root diffusion driving
volatility, was initially proposed for option pricing purposes in Heston (1993). It
obtains as a special case of the general model in this paper with jumps restricted
to zero (dJS

t = dJV
t = 0). The volatility process, Vt, captures serial correlation

in volatility. The κ and θ parameters measure the speed of mean reversion
and the (mean) level of volatility, respectively. The parameter σ is commonly
referred to as the “volatility-of-volatility.” Higher values of σV imply that the
stock price distribution will have fatter tails. The correlation parameter, ρ, is
typically found to be negative which implies that a fall in prices usually will be
accompanied by an increase in volatility which is sometimes referred to as the
“leverage effect” (Black (1976)). A negative ρ implies that the conditional (on
initial stock price, St, and volatility, Vt) returns distribution is skewed to the
left.

The option pricing implications of the SV specification have been carefully
examined. We summarize its properties in the following:

1. For finite and strictly positive return horizons, the excess kurtosis of the
conditional returns distribution is everywhere positive (Das and
Sundaram (1999)) and increasing in both σV and |ρ|. Positive kurtosis
implies concave, U shaped implied Black–Scholes volatility (IV) curves.
Hence, the concavity of the IV curves is increasing in σV and |ρ|.

2. Skewness of the conditional returns distribution is positive/zero/negative
for postive/zero/negative values of ρ. Correspondingly, for negative ρ, long
maturity contracts have a downward sloping IV curve across strikes (far
in-the-money contracts tend to be relatively more expensive) and vice
versa for positive ρ (again, see Das and Sundaram (1999)).

3. Depending on the initial volatility, Vt, the IV curves will be upward (low
Vt) or downward (high Vt) sloping in the maturity of the contracts.

4. The conditional returns distribution converges to a normal as the holding
period approaches either zero or infinity (assuming proper regularity). As
a consequence, the model predicts increasingly flatter IV curves for both
very long and very short maturity options. Contracts with a moderately
long time to maturity have both steeper and more concave Black–Scholes
implied volatility curves across different strikes.

B. SVJ Model

The stochastic volatility with jumps (SVJ) model is an extension to the SV
model that allows random jumps to occur in the prices. Specifically, JS

t is a pure
Poisson process, and JV

t = 0 ∀t. It is assumed that jump sizes are distributed
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Z S
t ∼ N

(
µ y , σ 2

y

)
. (3)

It is natural to think of this model as one that adds a mixture component to the
returns distribution. Essentially, this component adds mass to the tails of the
returns distribution. Increasing σy adds tail mass to both tails while a negative
(say) µy implies relatively less mass in the right tail, and vice versa.

The SVJ model inherits the option pricing implications one through three
for the SV model. Noticeably however, at short time horizons, the transition
density is non-Gaussian. This implies, relative to the SV model, that the IV
curves for short maturity options will be steeper whenever the jump size mean
is negative. Moreover the IV curves are typically more U shaped for larger
values of the jump size variance, σ 2

y .

C. SVCJ Model

In this model volatility is allowed to jump. Jumps to volatility and prices
are driven by the same Poisson process, JS = JV . This allows jump sizes to be
correlated

Z V
t ∼ exp(µV ), (4)

Z S
t

∣∣ Z V
t ∼ N

(
µ y + ρJ Z V

t , σ 2
S

)
. (5)

Thus, this model is labeled stochastic volatility with correlated jumps (SVCJ).
In essence, this model assumes that price jumps will simultaneously impact

both prices and volatility. Notice that the leverage effect built into the basic
SV model, is cluttered in the SVJ model because only small price movements
resulting from Brownian shocks will have an impact on volatility. Large price
moves stemming from jumps on the other hand, have no impact on volatility in
the SVJ model.

The SVCJ specification corrects this shortcoming in the SVJ model. When-
ever the ρJ parameter is negative, the larger a market crash, the more its
volatility will increase. Moreover, it is possible in this model for small price
changes to have no discernible impact on volatility while large price changes
(jumps) do (i.e., ρ = 0 and |ρJ| > 0). It is also possible that this model attributes
large market movements entirely to increases in volatility by setting the pa-
rameters in the price jump distribution, µy, ρJ, and σy, to zero.

The option pricing implications for the SVCJ model are quite similar to those
of the SVJ model. The added volatility jump component, however, will typically
add right skewness in the distribution of volatility, and hence, overall fatten the
tails of the returns distribution. Pan (2002) argues that the addition of a jump-
ing volatility component might explain her findings of a severely pronounced
increase in the volatility smile at short maturity, far in the money put options.
Although adding volatility jumps into the model primarily increases kurtosis in
the returns distribution, it is also possible for the SVCJ model to add skewness
into the conditional returns distribution through the parameter ρJ.
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D. SVSCJ Model

The stochastic volatility with state-dependent, correlated jumps (SVSCJ) is
the most general model considered in this paper. It generalizes the correlated
jump model described above to allow the jump frequency to depend on volatility,

λ0 + λ1Vt . (6)

Allowing for volatility jumps, this model generalizes models with state-
dependent price jumps considered by Bates (1996) and Pan (2002). A prop-
erty of the previous models is that in high-volatility regimes, the diffusive,
Gaussian part of the system will tend to dominate the conditional distribution.
As a result, as the spot volatility Vt increases, short-term option smiles will
tend to flatten. The SVSCJ model relaxes this restriction by allowing jumps to
arrive more frequently in high-volatility regimes. A previous draft of this paper
presented empirical evidence suggesting that this generalization is potentially
empirically important.

E. Pricing

In discussing the model implications for implied Black–Scholes volatility
above, we implicitly assumed that option prices were obtained as the expected
payoff under the observed, “objective” probability measure, P. In the well estab-
lished theory of arbitrage pricing, there is an equivalence between the absence
of arbitrage and the existence of a “risk neutral” probability measure, Q. Option
prices are computed as

Ct = EQ{
e−rt (T−t)(ST − X )+

∣∣Ft
}
.

See Duffie et al. (2000) for details. The difference between the two measures
follows from model assumptions. Here, we impose standard risk premium as-
sumptions in the literature and parameterize the models under the equivalent
measure Q, as

dSt

St
= (r − µ∗) dt +

√
VtdW(Q)S

t + dJ(Q)S
t , (7)

dVt = (κ(θ − Vt) + ηV Vt) dt + σV

√
VtdW(Q)V

t + dJ(Q)V
t , (8)

where µ∗ is the jump compensator term, and where dW(Q)t is a standard
Brownian motion under Q defined by dW(Q)i

t = ηidt + dWi
t for i = V, J. No-

tice that the volatility is reverting at the rate κQ := κ − ηV where ηV is a risk
premium parameter associated with shocks to the volatility process. A similar
risk premium, ηJ, is assumed to be associated with jumps. This gives the price
jump distribution under Q as

Z S
t

∣∣ Z V
t ∼ N

(
µQ

y + ρJ Z V
t , σ 2

S

)
. (9)
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Notice that it is generally very difficult to identify these risk premium param-
eters. Consider for example the parameter ηJ: while we can use the relationship
ηJ = µ

Q
y − µy to estimate ηJ, µy is only identified through time series observa-

tions on the underlying security. The problem, in a nutshell, is that we only
observe a fraction λ of a T long sample of jump dates for which we have data
available to estimate µy. Hence, whenever λ approaches zero, the likelihood
function is uninformative about µy.

In order to compute theoretical options prices using the proposed stock price
dynamics above, we must proceed to invert characteristic functions
of the transition probability for the stock price. The characteristic function
takes on an exponential affine form φ(u, τ ) = exp(α(u, τ ) + β(u, τ )Vt + uln St)
where the coefficients β and α solve ordinary differential equations (ODE).
For the SVSCJ model, general form for these ODEs can be found in Duffie
et al. (2001). For the SVCJ model, DPS give analytical expressions for these
coefficients.

The advantage of the SVCJ model and its simplifications, is that option prices
are available in semiclosed form through a numerical Fourier inversion. This
involves a numerical integration of the imaginary part of the complex Fourier
transform. This numerical integration needs to be carried out repeatedly in our
MCMC sampler. Hence, it is crucial to the performance of the algorithm that
this integration can be rapidly performed.

II. Econometric Methodology

While a number of methods have been proposed for the estimation of dif-
fusion processes,4 the latent nature of volatility as well as the jump compo-
nents complicates estimation. In recent work Singleton (2001), Pan (2002), and
Viceira and Chacko (1999) develop GMM-based procedures exploiting the
known characteristic functions of affine models. Typically, however, methods
based on simulation have been employed for analysis. These methods include
the method of simulated moments (Duffie and Singleton (1993)), indirect in-
ference methods (Gourieroux, Monfort, and Renault (1993)) and the efficient
method of moments (EMM) (Gallant and Tauchen (1996)) among others.
The generality of simulation-based methods offers obvious advantages. For in-
stance, Andersen, Benzoni, and Lund (2002) use EMM to estimate jump dif-
fusion models from equity returns. Building on work for general state space
models in Carlin, Polson, and Stoffer (1992), Jacquier et al. (1994) pioneered
a method for estimating discrete time stochastic volatility models from re-
turns data. Their work showed that MCMC is particularly well suited to deal
with stochastic volatility models. Extensions into multivariate models can be
found in Jacquier, Polson, and Rossi (2003). Eraker (2001) proposes a general

4 See Aı̈t-Sahalia (2002) (analytic approximation to the likelihood function), Duffie and Glynn
(1996), Hansen and Scheinkman (1995) and Conley, Hansen, Luttmer, and Scheinkman (1997)
(moment based methods), and Aı̈t-Sahalia (1996), Jiang and Knight (1997), Stanton (1997), and
Bandi and Phillips (1999, 2000), (non-parametric methods) among others.
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approach to estimating diffusion models with arbitrary drift and diffusion func-
tions and possibly latent, unobserved state variables (e.g., stochastic volatil-
ity). MCMC-based estimation of jump diffusion models based on returns data,
has been considered in Johannes, Kumar, and Polson (1999) and Eraker et al.
(2003).

In the following, we outline the principles on which we construct an
MCMC sampler to estimate the option price parameters and the pricing er-
rors. Although the discussion is primarily concerned with option prices, it
can be applied to virtually any estimation problem involving derivative as-
sets for which theoretical model prices are explicitly available. For example,
the analysis would carry over straightforwardly to bond pricing/term structure
applications.

At the current level of generality, assume that option prices are determined
by a set of state variables, Xt = {St, Vt}, a parameter vector � , in addition
to other arguments such as time to maturity etc., χ , through a known func-
tion
F:

Pt = F (X t , χ , �). (10)

The theoretical prices Pt are computed through the Fourier inversion mentioned
above. The theoretical prices do not depend on the jump times or jump sizes
but only the current price St and volatility Vt.

We assume that there are observations available on n different assets re-
corded over a period [0, T]. There are mi recorded prices for contract i so that
M = ∑n

i=1 mi is the total number of observed option prices. Let si and Ti denote
the first and the last observation times for contract i.

There are two essential possibilities for the design of the database to be used:

1. Observations are recorded at discrete, integer times so that the total num-
ber of time periods under considerations is T. For example, we could record
daily or weekly closing prices on, say, n assets to obtain a total of n × T
data points.

2. Observations are available at transaction times. Typically, the use of trans-
actions data will result in unequally spaced observations at times ti, i =
0, . . . , N. Let S(t) denote the collection of assets for which we have obser-
vations at time t. Although we assume that this is not the case, we will
typically only observe one asset trading at the time, in which case N equals
the total sample size, M.

Market prices, Yti , j , are assumed to be observed with pricing errors εti , j

Yti , j = F (X ti , χi, �) + εti , j .

We wish to allow for a serial dependence in the pricing errors, εti , j , of each
asset j. This reflects the prior belief that if an asset is misspriced at time t, it
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is also likely to be misspriced at t + 1. For consecutive observations on option j
at times t − 1 and t, as in case (1) above, we assume that the pricing errors are
distributed

εt, j ∼ N
(
ρ j εt−1, j , s2

j

)

and that εt,i is independent of εt, j, for j = i.
Whenever transactions data are recorded at random transaction times ti

(case 2), the corresponding distributional assumption with respect to the pricing
errors is

εti , j ∼ N
(

εti−1, j eρ j �ti , s2
j

1
2ρ j

(1 − e−2ρ j �ti )
)

. (11)

This corresponds to the simple AR(1) model for the pricing errors as in case (1),
but with observations recorded at fractional, random times. Notice that this
specification is observationally equivalent to assuming that the pricing errors
follow independent Ornstein–Uhlenbeck processes. Accordingly, we must also
impose a prior restriction on the autoregressive parameters ρj to be strictly
negative.

It is, in principle, possible to relax the assumption of cross-sectionally in-
dependent pricing errors. Multiple complications arise, however. First, as the
number of contracts pairs which have overlapping observations is limited, cor-
relations, say ri,j, between pricing errors of contracts i and j would only be
identified through prior assumptions whenever the sampling intervals of the
two do not overlap. Bayesian analysis would of course allow this, arguably less
restrictively so by assuming a hyper-distribution on ri,j’s. Second, an equally se-
rious problem would involve the joint identification of all model quantities if we
were to allow for such cross-sectional correlation in the pricing errors. A latent
factor structure εt,i = Ciet + et,i with et being a common factor illustrates the
problem: Here, et would “compete” with the volatility factor, Vt, in explaining
cross-sectional shifts in prices. As such, the introduction of a common factor
in the residual terms is likely to increase estimation error in Vt, as well as
parameters that govern its dynamics.

A. Joint Posterior Density

The specification of the error distribution, together with a specification of the
full prior of all model parameters �, completes the specification of joint density
for observed data, model parameters, and the state variables. This joint density
is the key quantity needed to derive an MCMC sampler for the problem. In the
following, we therefore outline the specification of this density.
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First, the specification of the pricing errors allows us to write the conditional
density for the joint observations, Y = {Yti , j : i = 1, . . . , N , j = 1, . . . , n} as

p(Y | X , �) ∝
N∏

i=1

∏
j∈S(t)

φ
(
Yti , j ; F (X ti , χ j , θ ) + ρ j εti , j , s2

j

)

= :
N∏

i=1

p(Yti | X ti , εti , �),

where φ(x; m, s2) denotes a normal density with mean m and variance s2 eval-
uated at x and � := {θ , ρj, sj, j = 1, . . . , n}.

Even though the option prices do not depend on the jump times and the jump
sizes, the dynamics of the prices and volatility, jointly labeled Xt, of course do
depend on these quantities.

The joint posterior density of options data Y, state variables, X, jump times,
J, and jump sizes Z, and parameters � can now be written

p(Y , X , Z , J , �) ∝ p(Y | X , �)p(X | θ )p(Z | J , �)p(J )p(�)

=
N∏

i=1

p(Yti | X ti , εti , �)p(X ti | X ti−1 , Zti , Jti �)

× p(Zti | Jti , �)p(Jti ,�)p(�), (12)

where p(X ti | X ti−1 , Zti , Jti , �) is the transition density of the jump diffusion
process and p(�) is the prior for �.

The density, p(X ti | X ti−1 , Zti , Jti , �), is generally unknown. There are two
ways of estimating this density: (1) the Fourier transform of the transition den-
sity p(X ti | X ti−1 , θ ) can be found in closed form so the Levy inversion formula
can be used to evaluate. This is potentially time consuming because, unlike eval-
uation of the option prices, this Fourier inversion requires a two-dimensional
numerical integration to obtain the joint density for Xt = (St, Vt). Also, working
with the transition density directly eliminates the need to simulate J and Z.

A second possibility is to use a Gaussian approximation corresponding to the
Euler discretization of the process:

X ti − X ti−1 = µ(X ti−1 ; θ )�ti + σ (X ti−1 ; θ )�Wti + Jti Zti . (13)

This is reasonable as long as the observation intervals, ti, are not too far apart.
In a simulation study, Eraker et al. (2003) show that the discretization bias aris-
ing from the use of daily intervals is negligible. In the setup here, these errors
are potentially even smaller whenever intradaily data are available. Finally,
it is also possible to base estimation on the Gaussian, discretized transition
density whenever observations are not finely spaced by filling in missing data
in between large observation intervals (see Eraker (2001)).
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B. MCMC Sampling

The purpose of MCMC sampling is to obtain a sample of parameters, �,
latent volatilities, Vti , jump times, Jti , and jump sizes, Zti , from the their joint
posterior density p(V, J, Z, � | Y). This accomplishes the essential problem of
estimating the marginal posterior density of the parameters, p(� | Y). Notice
that we can accomplish this task by designing a sampling scheme that produces
random draws, �(1), �(2), . . . , �(G), whose density is p(V, J, Z, � | Y) since, by
a simple application of Bayes theorem, p(� | Y) ∝ p(V, J, Z, � | Y). In other
words, a random sample from the joint posterior density is also implicitly a
sample from the marginal density of each of its components.

Therefore, all methods of Bayesian inference through MCMC have the com-
mon goal of designing a scheme to sample from a high-dimensional joint den-
sity. Notice that, unfortunately, there are no known methods that allow us to
sample from this density directly. There are two problems. First, the density’s
dimension is a multiple of the sample size, making it far too highly dimensional
to sample from directly. Second, the density is nonstandard, making even the
drawing of one particular element a difficult task, since direct sampling meth-
ods only apply to problems where the density is known. We will deal with these
problems in a fashion that has become rather mainstream in the numerical
Bayes literature. The dimensionality problem is handled by employing a Gibbs
sampler that essentially allows all random variables of the joint posterior to
be simulated sequentially, one at a time. Gibbs sampling calls for the deriva-
tion of the conditional posterior densities, to be discussed below. Second, the
problem of nonstandard conditional densities, will be solved by implementing a
series of Metropolis Hastings draws. The specific details of how these sampling
algorithms are implemented, are given next.

C. Gibbs Sampling

The Gibbs sampler employed here calls for the following simulation scheme:

For g = 1, . . . . , G, i = 1, . . . , N, simulate

V (g )
ti

from p(Vti | V (g−1)
t\i

, J (g−1), Z(g−1), �(g−1), Y)

J (g )
ti

from p(Jti | V (g ), J (g−1)
t\i

, Z(g−1), �(g−1), Y)

Z (g )
ti

from p(Zti | V (g ), J (g ), Z (g−1)
t\i

, �(g−1), Y )

and

�(g) from p(� | V (g), J(g), Z(g), Y (g), ρ(g−1), s(g−1)).

This recursive scheme is started from an appropriate set of starting values
for g = 0.

Seemingly, the Gibbs sampling scheme above calls for the derivation of the
four different conditional posterior densities. While this might seem difficult,
notice that these conditionals are all proportional to the joint posterior p(V, J,
Z, � | Y) which follows from an easy application of Bayes theorem. Since the
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normalizing constant is unimportant, it suffices to know this joint density to
run this sampler. In practice, it is useful to study each and one of the four
densities in question to see if simplifications can speed up the algorithm.

The densities in the above Gibbs sampling scheme do indeed simplify. Hence,
it is not necessary to use the entire expression in (12). We now go through these
simplifications in turn. The conditional posterior for spot volatility at time ti
can be written,

p
(
Vti

∣∣ V (g−1)
t\i

, J (g−1), Z (g−1), �(g−1), Y
)

∝ p(Yti | X ti , εti , �)p(X ti | X ti−1 , Zti , Jti , �)p(X ti+1 | X ti , Zti+1 , Jti+1 , �). (14)

The simplification here stems from the Markov property of the process. Only
the terms in (12) where Vti enters directly are relevant and the remaining terms
in the product sum are absorbed into the normalizing constant. Similar sim-
plifications are commonly encountered in state-space models where the state
variable (here: volatility) is Markov. Notice that this is a nonstandard density.
As such, simulation from this density requires a metropolis step.

Next, we turn to the densities for the jump times and sizes. The jump indi-
cator, Jti , is a binary random variable (taking on 0 or 1). Thus, it is sufficient
to find the probability Pr(Jti = 1 | X , Z , Y , �), which again simplifies to

Pr(Jti = 1 | X , Z , Y , �)

= p(X ti | X ti−1 , Zti , Jti = 1, θ )p(Zti | Jti = 1)p(Jti = 1)∑
s=0,1 p(X ti | X ti−1 , Zti , Jti = s, θ )p(Zti | Jti = s)p(Jti = s)

.

Notice that it does not depend on the option prices directly. This follows from the
fact that the option prices do themselves not depend on the jump indicator and,
hence, vice versa. The conditional draw for the jump indicator, Jti , is identical
to the one in Eraker et al. (2003).

The conditional distributions for the jump sizes, Zti = (Z S
ti

, Z V
ti

), also do not
depend on the option prices. Again this follows from the fact that option prices
depend only on the state, X = (S, V). As a result, the conditional distribution for
Zti is the same truncated normal distribution as given in Eraker et al. (2003),
and the reader is referred to this paper for details.

Finally, we note that the conditional distribution for the parameter vector �

is also nonstandard. This makes it necessary to do a metropolis step. We use
a normal proposal density centered at the current draw and with covariance
matrix estimated by a preliminary run of the algorithm. Notice that this ac-
complishes drawing of simultaneous, highly correlated variables which reduces
serial correlation in output of the sampler relative to the optional method of
drawing an element at a time. The latter is also more computationally expen-
sive as it requires a recomputation of all option prices (through recomputing
the likelihood) for each of the parameters.

The distribution of the pricing error parameters, ρj and sj are Gaussian/
gamma respectively, whenever the data are collected at integer, equally sized
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intervals, but not whenever sampling times are random. Still, whenever sam-
pling times are random, we can factor the conditional density into a Gaussian,
and a non-Gaussian part which enables an easy metropolis sampler to be set
up by proposing from the Gaussian part and accepting with the non-Gaussian
part.

III. Data

The empirical analysis in this paper is based on a sample of S&P 500 op-
tions contracts. The sample consists of daily CBOE closing prices, and has
previously been used by Aı̈t-Sahalia, Wang, and Yared (2001) and David and
Veronesi (1999), among others. Aı̈t-Sahalia et al. (2001) point out that the lack
of timeliness between the closing prices of potentially illiquid options and the
underlying index introduces noise in the observations. In response to this, they
suggest backing out the value of the underlying asset through a put-call parity.
Essentially, this approach is equivalent to computing the put/call prices without
relying on their theoretical relation to the underlying asset, but rather their
theoretical relation to the corresponding put or call. We apply the same adjust-
ment here, for the same reasons. We also delete from the database observations
with prices less than one dollar because the discreteness of quotes has a large
impact on these observations.

The full sample of options available in the estimation period contains some
22,500 option prices. Using the entire data set call for excessive computing
times, likely in the order of months. In order to facilitate estimation in a timely
fashion, we need to select a subsample from the larger database. The subsam-
pling scheme is constructed by randomly choosing a contract trading at the
first day of the sample. All recorded observations of this particular contract
are then included. As of the first trading day for which this contract where not
trading, we randomly pick another contract trading on that day. The procedure
is repeated so as to construct a subsample for which there is at least one con-
tract available each trading day. In total, this subsampling procedure produces
3,270 call options contracts recorded over 1,006 trading days, covering the pe-
riod of January 1, 1987 to December 31, 1990. The remaining sampling period,
January 1, 1991 to March 1, 1996, is kept for out-of-sample testing purposes.
This leaves some 36,890 transactions to be used in the out-of-sample analysis.

The subsampling procedure described above mimics the characteristics of the
larger database as closely as possible. Notice also that our sample includes a
random number of contracts at any one particular point in time, making it a
panel data set with a randomly sized cross section. Sample statistics describing
the data set are reported in Tables I and II.

IV. Empirical Results

A. Parameter Estimates

Table III reports the posterior means, posterior standard deviations, and the
1 and 99 posterior percentiles of the parameters in the various models. The
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Table I
Descriptive Statistics for Options Data

The table reports mean and standard deviation for option prices, implied volatilities (IV), time to
maturity (τ ), and moneyness (strike/spot).

Strike/Spot τ Price IV

1987–1991

Mean 0.98 50.33 10.4833 20.2%
SD 0.05 37.60 7.425 7.8%

1991–1996

Mean 0.99 45.91 17.88 14%
SD 0.06 44.27 23.13 6%

Table II
Descriptive Statistics for Returns Data

The table reports means, standard deviations, skewness, and kurtosis for S&P 500 returns data
collected from January 1, 1987 to December 31, 1990.

All Observations Deleting 1987 Crash

Mean SD Skew. Kurt. Mean SD Skew. Kurt.

1987–1991

Daily 0.03 1.35 −5.06 87.50 0.05 1.15 −0.50 12.67
Weekly 0.14 3.28 −4.14 41.32 0.26 2.45 −0.70 3.99
Monthly 0.58 6.26 −1.42 7.92 1.08 4.52 0.17 4.23

1970–1991

Daily 0.03 0.98 −2.32 60.26 0.03 0.93 −0.05 8.44
Weekly 0.13 2.29 −0.48 7.46 0.15 2.22 −0.05 4.14
Monthly 0.53 4.52 −0.67 4.93 0.62 4.36 −0.35 3.92

parameters are quoted using a daily time interval following the convention in
the time-series literature. Notice that the parameters need to be annualized
to be comparable to typical results in the option pricing literature (e.g., Bates
(2000), Pan (2002)).

There are several interesting features of the parameter estimates in Table III.
We start with an examination of the estimates in the SV model. The long-term
mean of the volatility process, θ is 1.93, which is relatively high. It corresponds
to an annualized long-run volatility of 22%. The estimate is slightly higher than
the unconditional sample variance of 1.832 (see Table II). Typically, estimates
reported elsewhere of the unconditional variance of S&P 500 returns are some-
what below 1%, corresponding to an annualized value somewhat less than 15%.
Our estimates of 1.933/1.832 are indicative of the relatively volatile sample pe-
riod used. For the SVJ and SVCJ models, the estimates of θ are much smaller,
suggesting that the jump components are explaining a significant portion of
the unconditional return variance.
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Table III
Parameter Estimates

The table reports posterior means and standard deviations (in parenthesis), and 99 credibility
intervals (in square brackets) for parameters in the jump diffusion models based on joint options
and returns data. The parameters, ηV and ηJ , denote the market premiums for volatility and jump
risk, respectively. Parameter estimates correspond to a unit of time defined to be one day, and
returns data scaled by 100.

SV SVJ SVCJ SVSCJ

θ 1.933 1.652 1.353 0.943
(0.048) (0.053) (0.067) (0.065)

[1.843, 2.064] [1.523, 1.777] [1.243, 1.560] [0.767, 1.080]

κ 0.019 0.019 0.023 0.023
(0.007) (0.006) (0.007) (0.007)

[0.004, 0.035] [0.005, 0.034] [0.010, 0.038] [0.010, 0.040]

κQ 0.009 0.011 0.011 0.006
(0.000) (0.000) (0.000) (0.000)

[0.009, 0.010] [0.010, 0.011] [0.010, 0.012] [0.005, 0.008]

ηV 0.010 0.009 0.013 0.017
(0.007) (0.006) (0.007) (0.007)

[−0.005, 0.026] [−0.006, 0.024] [−0.001, 0.028] [0.003, 0.033]

ρ −0.569 −0.586 −0.582 −0.542
(0.014) (0.027) (0.024) (0.034)

[−0.601, −0.535] [−0.652, −0.526] [−0.646, −0.528] [−0.620, −0.462]

σV 0.220 0.203 0.163 0.137
(0.007) (0.007) (0.007) (0.007)

[0.203, 0.240] [0.187, 0.218] [0.148, 0.181] [0.122, 0.154]

µy −0.388 −6.062 −1.535
(3.456) (2.274) (0.184)

[−8.560, 7.631] [−11.566, −0.881] [−1.997, −1.120]

µ
Q
y −2.002 −7.508 −7.902

(1.867) (0.932) (0.843)
[−6.079, 2.022] [−9.725, −5.527] [−9.703, −5.984]

ηJ 1.613 1.446 6.367
(3.789) (2.474) (0.842)

[−7.320, 10.478] [−4.516, 6.939] [4.472, 8.117]

ρJ −0.693 −2.214
(0.096) (0.099)

[−0.856, −0.449] [−2.435, −2.013]

σy 6.634 3.630 2.072
(1.081) (1.106) (0.302)

[4.972, 9.508] [1.403, 6.261] [1.439, 2.717]

µV 1.638 1.503
(0.790) (0.279)

[0.833, 3.231] [1.078 , 2.065]

λ0 0.002 0.002 0.002
(0.001) (0.001) (0.001)

[0.001, 0.003] [0.001, 0.004] [0.001, 0.004]

λ1 1.298
(0.141)

[1.086, 1.606]
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The κ parameter is low under both the objective and risk neutral measures. As
a rule of thumb, estimates of κ can be interpreted as approximately one minus
autocorrelation of volatility. Hence, estimates ranging from 0.019 to 0.025 imply
volatility autocorrelations in the range 0.975–0.981 which is in line with the
voluminous time-series literature on volatility models.

The speed of mean reversion parameter under the risk neutral measure, κQ,
is a parameter of particular interest. The difference between these parame-
ters across the two measures, ηV = κ − κQ, is the risk premium associated with
volatility risk. These volatility risk premiums are estimated to be positive across
all models. For the SVSCJ model, the estimate of this parameter is “significant”,
in the sense that its 1 percentile is greater than zero. The volatility risk pre-
mium is similarly found to be “significant” at the 5% level for the SVCJ model,
and insignificant for the SVJ and SV models. A positive value for this parame-
ter implies that investors are averse to changes in volatility. For option prices,
this implies that whenever volatility is high, options are more expensive than
what is implied by the objective measure as the investor commands a higher
premium. Conversely, in low-volatility periods, the options are less expensive,
ceteris paribus. Figure 1 quantifies this effect in terms of annualized Black–
Scholes volatility for an ATM option across maturities for different values of
the initial volatility, Vt. As can be seen by the figure, whenever volatility is
high, the risk premium is positive at all maturities and peaks at about 2 per-
centage points (annualized) at 130 days to maturity. Conversely, the low initial
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Figure 1. Volatility premium. The figure shows the increase in Black–Scholes volatility due to
volatility risk premium, ηV , for the SVCJ model.
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spot volatility gives a decreasing and then increasing premium. The limiting
premium (as maturity increases) is zero since the limiting (unconditional) stock
price distribution does not depend on the speed of mean reversion under either
measure.

Next, we examine the volatility of volatility, σV , and correlation, ρ, between
Brownian increments. Our estimates of σV are a little more than two times those
obtained for the same models in Eraker et al. (2003) from time-series analysis
on a longer sample of S&P 500 returns (see below). The correlation coefficient
is also larger in magnitude. There is a certain disagreement in the literature
as to the magnitude of both these parameters, as well as whether estimates
obtained previously, are reasonable. We examine these issues in more detail
below.

We now turn to discuss the jump size parameters and the related jump fre-
quencies. First, we note that the jumps occur extremely rarely: The λ estimates
in Table III indicate that one can expect about two to three jumps in a stretch of
1,000 trading days. The unconditional jump frequency is only marginally higher
for the state dependent SVSCJ model. Whenever spot volatility is high, say a
daily standard deviation of 3%, the estimate of λ1 is indicative of an instanta-
neous jump probability of about 0.003—a 50% increase over the constant arrival
intensity specifications. According to SVJ estimates, observed jumps will be in
the range [−13.4,12.6] with 95% probability when they occur.

A notable implication of the estimates of the mean jump sizes, µy and µ
Q
y

in Table III, is that under both measures these parameters are difficult to
identify. In particular, this parameter is difficult to estimate accurately under
the objective risk probability measure. The reason is simple: Option prices do
not depend on µy, so this parameter is only identified through the returns
data. To illustrate how the difficulties arise, assume a hypothetical estimator
based on knowledge of when the jumps occurred and by how much the process
jumped. Then µy would be identified as the mean of these observations’ jump
sizes. But, since there are very few observations in the sample for which jumps
are estimated to have occurred, this hypothetical estimator becomes very noisy.
In reality, it is even more difficult to identify µy because jump times and sizes
are not known. Not only does this introduce more noise than the hypothetical
estimator, but it gives an improper posterior distribution if the investigator
does not impose an informative (proper) prior.5

There are equivalent problems in estimating the other parameters in the
jump distribution for low jump-frequencies. This manifests itself by the fairly
high posterior standard deviations in jump-size parameters, particularly for
the SVJ model. This contrasts with the parameters which govern the dynam-
ics in the volatility process, which, without exception, are extremely sharply
estimated. The posterior standard deviations are somewhat smaller in the

5 The same problem should be expected for maximum likelihood and other less informationally
efficient non-Bayesian methods and such methods should give standard errors associated with µy
that are proportional to 1/

√
λ.
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SVCJ model. The reason is that this model incorporates simultaneous jumps
in volatility and returns, and since the latent volatility is very accurately es-
timated (see below), so are the jump times. Since jump times are accurately
estimated, it is easier for the method to find the jump sizes, and hence jump
size parameters under the objective measure. As a consequence, for the SVCJ
model, we estimate µy more accurately than for the SVJ model.

The difference between the mean jump sizes under the respective probability
measures, ηJ, is the premium associated with jump risk, and is therefore of
particular interest. The premium is estimated to be positive for all models, but
with a very sizable credibility interval for both the SVJ and the SVCJ models.
Hence, we cannot conclude that there is a significant market premium to jump
risk for these models. For the SVSCJ model, the posterior 1 percentile for ηJ is
4.47, indicating that for this model the jump risk premium is significant. The
estimates reported here are much smaller in magnitude than corresponding
estimates in Pan (2002).

The parameter estimates in Table III are interesting in light of estimates ob-
tained elsewhere. The results in BCC are a particularly interesting reference
because they are obtained purely by fitting the option prices, and are not con-
ditioned on time-series properties of returns and volatility. The BCC estimates
are indeed very similar to the ones obtained here. Notably, BCC estimate the
jump frequency for the SVJ model is 0.59/252 = 0.0023 daily jump probability,
and the jump-size parameters µ

Q
y and σy are −5 and −7%, respectively. Hence,

using only options data, BCC obtain quite similar estimates from those reported
here for the jump component of the model. Their volatility process parameters
are also close to the ones reported here: Their estimate of κ and σV are 0.008
and 0.15, respectively, when converted into daily frequencies.6

Pan (2002) and Bates’ (2000) model specifications differ from the simple price-
jump model (SVJ) considered here, in that the jump frequency, λ, depends on
the spot volatility, and hence the jump size and jump frequency parameters
are not really comparable to those reported in BCC and here. Interpreting
the differences with this in mind, the average jump intensity point estimates
in Pan are in the range [0.0007, 0.003] across different model specifications.
Hence, her estimates are in the same ballpark as those reported in BCC and
here. Interestingly, Bates obtains quite different results, with an average jump
intensity of 0.005.7 Bates also reports a jump size mean ranging from −5.4
to −9.5% and standard deviations of about 10–11%. Hence, Bates’ estimates
imply more frequent and more severe crashes than the parameter estimates
reported in BCC and in this paper. The practical implication of the difference

6 The numbers refer to BCC’s Table III, “all options” column. To convert their parameters into
daily counterparts, divide λ and κ by 252. The jump size parameters are unaffected by the difference
in frequency.

7 The papers by Pan and Bates model the jump frequencies as λ = λ1Vt where Vt is the spot
volatility. The average jump intensities reported here are obtained from Pan and Bates’ papers
as the multiple of the long-run volatility mean, θ , and the proportionality parameter, λ1. The
calculations are at this author’s own account.
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is that his estimates will generate more skewness and kurtosis in the con-
ditional returns distributions, and consequently also steeper Black–Scholes
implied volatility smiles across all maturity option contracts. In particular,
since the jump intensity in Bates depends on volatility, his model will generate
particularly steep implied volatility curves whenever the spot volatility, Vt, is
high.

Finally, to put the estimates in perspective, Table IV shows parameter esti-
mates obtained by using returns data only. Estimates are shown for the SV, SVJ,
and SVCJ models only. The estimates were obtained using returns collected

Table IV
Parameter Estimates from Returns Data

The table reports posterior means and standard deviations (in parenthesis) and 99% credibility
intervals (in square brackets) for parameters in the jump diffusion models based on returns data
only. Parameter estimates were obtained using the estimation procedure in Eraker et al. (2003)
using 5,307 time-series observations of the S&P 500 index from January 1970 to December 1990.

SV SVYJ SVCJ

a 0.026 0.026 0.030
(0.011) (0.011) (0.011)

[0.000, 0.051] [0.000, 0.050] [0.004, 0.056]

θ 0.881 0.834 0.573
(0.098) (0.122) (0.078)

[0.692, 1.163] [0.590, 1.221] [0.397, 0.750]

κ 0.017 0.012 0.016
(0.005) (0.006) (0.003)

[0.008, 0.030] [0.004, 0.022] [0.009, 0.023]

ρ −0.373 −0.468 −0.461
(0.056) (0.065) (0.073)

[−0.500, −0.242] [−0.601, −0.295] [−0.616, −0.237]

σV 0.108 0.079 0.058
(0.011) (0.011) (0.012)

[0.082, 0.137] [0.061, 0.104] [0.030, 0.078]

µy −3.661 −3.225
(2.486) (2.523)

[−10.752, 1.281] [−10.086, 2.436]

ρJ 0.312
(1.459)

[−3.580, 3.833]

σy 6.628 4.918
(1.697) (1.272)

[3.714, 11.742] [2.880, 9.295]

µV 1.250
(0.381)

[0.681, 2.523]

λ 0.003 0.004
(0.001) (0.001)

[0.001, 0.006] [0.001, 0.007]
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over the period January 1970 to December 1990, so comparisons with the esti-
mates in Table III should be done with this in mind. Not too surprisingly, the
estimates in Table IV are close to those reported in EJP although some sen-
sitivity to the sampling period in use is inevitable: the two papers use about
20 years of data, with the 1980s being common. So while the sample used
in EJP includes the −7% returns on October 27, 1997 and August 31, 1998,
comparably large moves did not occur in the 1970s. This leads to a different es-
timate of jump frequency in this paper (λ = 0.004 versus 0.0055, respectively).
The other parameters are in the same ballpark as those reported in EJP. Notice
again how the volatility-of-volatility parameter, σV , is noticeably smaller than in
Table III.

B. Option Price Fit

In this section, we discuss the empirical performance of the various models in
fitting the historical option prices. Table V reports the posterior means of abso-
lute option pricing errors for the different models, conditional upon moneyness
and maturity.

The results in Table V may seem surprising at first. The pricing errors for all
four models are about 47 cents on average. Information about bid/ask spreads
is missing from this database. However, similar data were used by BCC who
reported that the spread ranged from 6 to 50 cents. Consequently, the pricing
errors reported here are likely to be somewhat larger than the average bid/ask
spread.

At first glance, the fact that the simple SV model fits the options data as
well as the SVSCJ model seems implausible. After all, the SVSCJ model incor-
porates six more parameters, so how is it possible that it does not improve on
the simple SV model? The answer is a combination of explanations: First, our
MCMC approach does not minimize pricing errors. Simply, there are no objec-
tive functions that are optimized, but rather the results in Table V are mean
errors over a large range of plausible (in the sense that they have positive pos-
terior probability mass), parameter values. This way of conducting Bayesian
model comparisons differs fundamentally from classical methods. An analogy
is the computation of Bayes factors which are the ratio of likelihood functions
that are averaged over the posterior distributions. This will sometimes give
(marginalized) likelihoods which favor the most parsimonious model. More-
over, the jump models do not really increase the degrees of freedom by a notable
amount. The number of parameters increases by six in the SVSCJ model, but
there are 3,270 sample option prices, so the increase in degrees of freedom is
marginal and practically negligible. This is an important difference between
this study and the one by Bakshi et al. (1997). In their paper, since the model
parameters are recalibrated every day, adding one parameter increases the de-
grees of freedom by the number of time-series observations. Notice that the
improvement in fit for the SVJ model over the SV model reported in BCC, is
in the order of a few cents only. By contrast, BCC report that the SV model
improves more than 90 cents on the Black–Scholes model. BCC concludes that
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Table V
Absolute Pricing Errors

The table reports mean absolute pricing errors for different option models conditional on time to
maturity and moneyness. The errors are not corrected for serial correlation. All pricing errors in
dollars.

Moneyness (Strike/Spot)

Maturity <0.93 0.93–0.97 0.97–1.0 1.0–1.03 1.03–1.07 >1.07 All

# 13 86 289 272 71 9 740
SV 0.67 0.35 0.35 0.48 0.53 0.47 0.42

<1 m SVJ 0.61 0.35 0.36 0.46 0.51 0.55 0.42
SVCJ 0.69 0.35 0.32 0.43 0.48 0.51 0.39
SVSCJ 0.76 0.35 0.29 0.40 0.43 0.38 0.36

# 13 105 248 312 257 76 1011
SV 0.33 0.42 0.32 0.43 0.54 1.14 0.48

1–2 m SVJ 0.32 0.41 0.34 0.44 0.54 1.21 0.49
SVCJ 0.35 0.45 0.33 0.44 0.52 1.19 0.49
SVSCJ 0.30 0.49 0.38 0.46 0.54 1.20 0.51

# 10 74 125 188 127 79 603
SV 0.37 0.39 0.47 0.43 0.48 0.58 0.46

2–3 m SVJ 0.37 0.40 0.50 0.45 0.51 0.63 0.49
SVCJ 0.36 0.40 0.48 0.39 0.48 0.55 0.45
SVSCJ 0.36 0.36 0.41 0.39 0.51 0.49 0.43

# 22 68 110 194 140 176 710
SV 1.09 0.38 0.38 0.57 0.50 0.39 0.48

3–6 m SVJ 0.98 0.37 0.39 0.61 0.51 0.39 0.49
SVCJ 0.95 0.35 0.36 0.57 0.50 0.42 0.48
SVSCJ 1.14 0.46 0.38 0.49 0.50 0.45 0.48

# 5 14 23 42 40 82 206
SV 0.74 0.64 0.39 0.63 0.74 0.45 0.56

> 6m SVJ 0.69 0.68 0.43 0.67 0.78 0.46 0.58
SVCJ 0.73 0.70 0.42 0.65 0.72 0.41 0.55
SVSCJ 0.84 0.71 0.42 0.60 0.64 0.39 0.52

# 63 347 795 1008 635 422 3270
SV 0.71 0.40 0.37 0.48 0.53 0.57 0.47

All SVJ 0.65 0.40 0.38 0.49 0.54 0.60 0.47
SVCJ 0.66 0.41 0.36 0.46 0.52 0.58 0.46
SVSCJ 0.74 0.43 0.35 0.44 0.52 0.58 0.46

“once stochastic volatility is modeled, adding other features will usually lead
to second-order pricing improvements.”

The lack of improvements in pricing results in Table V is somewhat at odds
with the results in Bates (2000) and Pan (2002) who both conclude that jumps
(in prices) are important in capturing systematic variations in Black–Scholes
volatilities. Figure 2 presents further evidence on the fit of the various mod-
els. The figure plots the model and market implied Black–Scholes volatilities
(IV) for high, medium, and low initial spot-volatility, and for different matu-
rity classes. Notice that the IVs are very similar for all three models, and on
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Figure 2. Model and market smiles conditional upon initial volatility and maturity. The
figure shows implied Black and Scholes volatility smiles for model generated prices and market
prices for different degrees of moneyness (strike/spot) on the x-axis. The plots are constructed
conditional upon the initial (spot) market volatility, Vt, (top to bottom), and for different maturity
contracts (left to right).
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average, they tend to fit the observed data reasonably well. There are a few
exceptions:

� For the short and medium maturity contracts during days of high or aver-
age spot volatility, the models do not generate sufficiently steep IVs.

� For long maturity contracts trading on days with low spot volatility, all
models except the SVSCJ model overprice.

The first observation motivated the generalization into state-dependent jump
intensity incorporated by the SVSCJ model. Models with such state depen-
dency will potentially generate steeper volatility smiles in high-volatility en-
vironments because the chance of observing large, negative jumps increases.
However, the estimate of λ1 is not large enough to yield a significantly steeper
volatility smile for this model relative to the simpler ones.

It is important to recognize that the results in Table V could be sensitive to
the dollar/cent denomination specification for the pricing errors. For example, if
the errors were measured in percent of the option price, the results would place
heavier weight on short-term OTM or ITM contracts and thus, put relatively
more emphasis on the tails of the return distributions at short horizons. The
same effect is likely to occur if the errors are measured in terms of Black–Scholes
implied volatilities. This is not only true for the pricing errors in Table V, but
also for the parameter estimates in Table III. In particular, it is true that the
values of the joint posterior distribution of the SVSCJ model are not too differ-
ent for different parameter constellations for which the importance of jumps
increases relative to that of the volatility component. In particular, parameter
constellations involving more frequent jumps tend to improve the option price
fit at short horizons, but deteriorate the fit for long-term contracts. Hence,
judging by measures that would lend more weight to shorter contracts, such
parameter constellations would potentially be found important. It may be that
a different benchmark measure of performance could alter our conclusions. To
examine the reasonableness of this conjecture, it is important to realize that
the distribution of the pricing errors should be the guideline for the specifica-
tion. To see this, assume that there were no pricing errors. We should then be
able to identify all model parameters as well as latent volatility with arbitrar-
ily good precision regardless of whether the likelihood function is defined over
dollar values, implied volatilities, or relative pricing errors. Since this assump-
tion is obviously violated, the all-important issue becomes the distribution of
pricing errors. For example, assume that we modeled the errors in terms of
implied Black–Scholes volatilities. We know that implied volatilities become
increasingly variable for contracts in or out of the money (see Jackwerth and
Rubenstein (1996)). Hence, if we were to specify the likelihood function over im-
plied Black–Scholes volatility, we would have to incorporate this heteroskedas-
tic feature of the data into the specification of the likelihood function. In do-
ing so, we would in fact specify a likelihood function which would lend equal
weight to all observations across different moneyness categories. Hence, it is
not clear that short ITM/OTM contracts are given greater weight in a correctly
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specified likelihood function defined over relative errors or implied Black–
Scholes volatilities.

Our choice of error distribution based on dollars and cents can be motivated
from two observations. First, errors caused by discreteness of quotes should
be uniformly distributed in dollars across moneyness and maturity. Second,
and perhaps more important, the mean absolute errors in Table V are reason-
ably similar across moneyness and maturities. Thus, there do not seem to be
systematic patterns of heteroscasticity across different option classes.

A final note of caution on the performance of the models: The lack of improve-
ment for the jump models does not indicate that these models are incorrect.
Indeed, jumps may very well be warranted to model the time-series behavior
of the returns. I elaborate on this below.

C. Out-of-Sample Performance

The results discussed so far reflect in-sample fit obtained over the period
January 1987 to December 1990. This section presents results of out-of-sample
fit for the period January 1991 to March 1996. This leaves a total of 35,890
observations to be used in the out-of-sample performance study.

The procedure used to construct the out-of-sample errors is as follows. Given
parameter estimates in Table III, a so-called particle filtering approach is used
to estimate volatility Vt for each day t using information available at t − 1.
This approach has similarities with the popular method of inserting yester-
day’s Black–Scholes implied volatility into the Black–Scholes model to obtain
today’s prices. Pricing errors resulting from this approach will generally be
“close” to the ones obtained by actual minimization (with respect to Vt only).
The reader should bear in mind that since the parameters are fixed, there is no
way in which we can calibrate the shape of the term structure/volatility smile
as market conditions change. This is therefore a very restrictive exercise, and
results should be interpreted with this in mind.

Table VI presents the pricing errors broken down in maturity and money-
ness categories. The average pricing errors are not dauntingly large and vary
between 0.51 cents (SVSCJ) and 0.67 cents (SVCJ) on average. Hence, pricing
errors are larger out-of than in-sample. No uniform relationship between the
model complexity and the out-of-sample performance is evident. The SVSCJ
model produces prices which on average differ from market prices by 4 cents
less than the SV model. The SVJ and SVCJ models perform the worst.

Figure 3 plots the pricing errors for different maturity contracts for the dif-
ferent models. As can be seen from the figure, the pricing errors are moderately
small in the first year or two following the estimation period. They then become
progressively larger. This is particularly obvious for the first three models.

The mechanical explanation for the above findings is as follows. The volatility
of the out-of-sample period is significantly below that of the estimation period.
During the out-of-sample period, markets experienced unusually low volatility
and spot volatility (as well as implied Black–Scholes volatility) can be shown



1392 The Journal of Finance

Table VI
Out-of-Sample Absolute Pricing Errors

The table reports mean absolute pricing errors for different option models conditional on time to
maturity and moneyness. Results are based on parameters estimated in Table II for the subsequent
period January 1991 to March 1996. For each day, the model re-estimates spot volatility estimates
using a particle filtering method. All pricing errors in dollars.

Moneyness (Strike/Spot)

Maturity <0.93 0.93–0.97 0.97–1.0 1.0–1.03 1.03–1.07 >1.07 All

# 1213 2623 3306 3159 1398 161 11860
SV 0.19 0.29 0.40 0.40 0.17 0.07 0.32

<1 m SVJ 0.26 0.26 0.44 0.45 0.16 0.07 0.34
SVCJ 0.10 0.16 0.43 0.54 0.16 0.08 0.33
SVSCJ 0.76 0.38 0.46 0.36 0.43 0.50 0.45

# 964 1621 2830 3159 1675 244 10493
SV 0.37 0.50 0.52 0.52 0.33 0.17 0.46

1–2 m SVJ 0.37 0.48 0.51 0.51 0.32 0.18 0.45
SVCJ 0.21 0.32 0.46 0.58 0.35 0.25 0.43
SVSCJ 0.35 0.36 0.55 0.41 1.14 0.45 0.55

# 552 668 1446 2027 998 303 5994
SV 0.36 0.47 0.42 0.41 0.38 0.29 0.40

2–3 m SVJ 0.39 0.45 0.39 0.41 0.39 0.30 0.40
SVCJ 0.31 0.39 0.45 0.48 0.42 0.41 0.43
SVSCJ 0.29 0.30 1.20 0.39 0.46 0.48 0.58

# 635 482 861 1430 905 474 4787
SV 0.35 0.55 0.64 0.74 0.82 0.74 0.67

3–6 m SVJ 0.37 0.62 0.81 0.97 1.09 0.88 0.84
SVCJ 0.57 0.89 1.09 1.20 1.25 1.04 1.06
SVSCJ 0.40 0.49 0.52 0.51 0.38 0.84 0.50

# 354 289 390 598 516 609 2756
SV 0.93 1.59 1.66 2.37 2.53 2.66 2.10

>6 m SVJ 0.91 1.66 1.82 2.70 2.93 3.05 2.36
SVCJ 1.35 2.20 2.33 3.23 3.40 3.46 2.84
SVSCJ 0.44 0.38 0.36 0.49 0.49 0.71 0.50

# 3718 5683 8833 10373 5492 1791 35890
SV 0.36 0.46 0.52 0.60 0.59 1.18 0.56

All SVJ 0.39 0.44 0.55 0.66 0.66 1.35 0.61
SVCJ 0.36 0.40 0.59 0.79 0.75 1.56 0.67
SVSCJ 0.49 0.37 0.61 0.41 0.65 0.65 0.51

to move as low as 5 to 7%. This change of market conditions is hard to predict
from the volatile estimation sample which implicitly incorporates a long-term,
unconditional volatility which of course matches that of the sample average
over the estimation period.

There is a simple mechanical explanation for the above findings: The first
period used for parameter estimation included the crash of 1987, and the sub-
sequent high-volatility. This is reflected, for instance, in the relatively high pa-
rameter estimates for θ . For the SV model, the estimate of θ implies an average
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Figure 3. Out-of-sample pricing errors. The plot depicts pricing errors in dollars (model less
market) for short, medium, and long maturity contracts. Model prices are computed using pa-
rameter estimates in Table III, along with rolling estimates of spot volatility, conditional upon
information available up to, but not including, the sample date.
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volatility of 22%. Comparably, the annualized volatility during the out-of-
sample period is 15.3% which is very close to the long-term sample standard
deviation of S&P 500 returns. Since the average volatility will determine the
relative expensiveness of the longer term contracts, a too high value of θ will
lead to a systematic overpricing of long-term contracts. Conversely, short-term
contracts depend less heavily on the value of θ .

The premiums on long-dated contracts become increasingly sensitive to the
initial volatility as the value of κQ decreases. Smaller values of κQ imply that
the term structure of option premiums will shift parallel in response to volatil-
ity changes. In the out-of-sample period, both short- and long-dated contracts
become much less expensive than in the estimation period, so the out-of-sample
data indicate a parallel shift consistent with a small value of κQ. Since κQ was
estimated to be much lower for the SVSCJ model, this again explains why this
model outperforms the other models out-of-sample.

To further shed light on how the high values of θ affect the pricing errors, I
conducted another out-of-sample exercise where the values of θ were adjusted
to match the historical average volatility of 15%. Not surprisingly, the models
do a lot better after this adjustment, and the average pricing error for the SVCJ
model is only 36 cents, a mere half of the previous error. The SVCJ model is
particularly accurate in predicting the prices of the short-term contracts and
the average error in the less than one month category is only 22 cents, almost
half that of the SV model. Hence, these numbers support the notion that jump
diffusion models give better descriptions of the relative pricing of short-term
option contracts.8

The out-of-sample results described in this section nevertheless illustrate one
important shortcoming of stochastic volatility/jump models: The term struc-
ture of implied volatility cannot be matched with constant parameter values
throughout the nine year history considered here. In essence, the expensive-
ness of options in the first period implies a value of θ that is too high to be
consistent with the relatively cheaper prices of long-term options found in the
latter period.

The above evidence is consistent with various types of model misspecifica-
tion including structural shifts or other parameterization errors. It seems most
likely that a model which allows for more complex volatility dynamics could cap-
ture the pricing errors. For instance, in a previous section it was argued that
the option pricing errors were consistent with a higher speed of mean rever-
sion in high-volatility states, and vice versa. This could potentially also explain
the failure of the parameter estimates to capture the term structure of implied
volatility in the out-of-sample period because if mean reversion were system-
atically lower in low volatility states, the term structure of implied volatility
would be flatter in those states. Hence, the impact of the too high values of θ

would diminish.
The evidence is also consistent with two-factor volatility models where

the second factor determines the long-run volatility. Such models have been

8 These additional results are available from the author upon request.
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introduced to deal with the overly simple interest rate models which run into
similar problems as the volatility models considered here (see Dai and Singleton
(2000) and Andersen and Lund (1997) for examples). Two factor volatility spec-
ifications have been considered by Bates (2000) and Chernov et al. (1999) in
the context of pure time-series analysis. Both papers consider models where the
(stock) diffusion term take on the form

√
Vt,1dWt,1 + √

Vt,2dWt,2. Given a suffi-
ciently generous correlation structure, factor rotations can make such specifica-
tions observationally equivalent to the stochastic mean volatility specification
suggested above.

D. Do Option Prices Matter for Estimation?

There may be circumstances in which prior options data are not available for
estimation, or one does not want to use options data for estimation for other
reasons. In this case, parameter estimates obtained from historical returns data
alone can be used to price the option contracts, under simplifying assumptions
about risk premia. For instance, investors typically buy OTM put options for
(“crash”) insurance purposes. A seller of such an option may be indifferent to
the occurrence of large negative moves, and want to collect the positive jump
risk premia. Such an issuer might consider the fair value of the option to equal
that obtained under a zero risk premium assumption.

Table VII considers the performance of the option pricing models when the pa-
rameters governing the price dynamics are set equal to those obtained from pure
historical returns data in Table IV. As can be seen from the table, the returns-
based parameter estimates produce overall pricing errors that are smaller than
those in Table VI, but larger than those obtained when the long-term volatility
parameter is adjusted to match the S&P 500 historical average. Hence, by the
latter comparison, the use of parameter estimates based on joint options and
returns data provide economically significant performance enhancements.

E. Time-Series Fit

In what follows, we examine an essential question: Do option prices imply
stock price dynamics consistent with time-series data? The first topic of inter-
est is a re-examination of the evidence in BCC, Bates (2000) and Pan (2002)
suggesting that the volatility of volatility, σV implied by option prices, cannot
be reconciled with time-series estimates. In particular, BCC and Bates show
that their estimated volatility paths are too smooth to be consistent with the
relatively high σV estimated from option prices.

Table VIII reports estimates of σV from the simulated values of the historical
volatilities, Vg

t , t = 1, . . . , T, g = 1, . . . , G analogous to those in BCC and Bates.
The numbers match almost exactly those reported in Table III. The point es-
timates in Table VIII are slightly smaller than the posterior means reported
in Table III, however the posterior credibility intervals in Table III do indeed
overlap with the point estimates in Table VIII. Hence, the mismatch between
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Table VII
Out-of-Sample Absolute Pricing Errors Using Parameters Based on

Time-series Estimates
The table reports mean absolute pricing errors for different option models conditional on time
to maturity and moneyness. Results are based on parameters estimated from returns data only
(Table IV) and are obtained out-of-sample, January 1991 to March 1996. For each day, the model
re-estimates spot volatility estimates using a particle filtering method.

Moneyness (Strike/Spot)

Maturity <0.93 0.93–0.97 0.97–1.0 1.0–1.03 1.03–1.07 >1.07 All

# 1213 2623 3306 3159 1398 161 11860
SV 0.20 0.33 0.36 0.43 0.25 0.08 0.34

<1 m SVJ 0.10 0.17 0.31 0.34 0.17 0.06 0.25
SVCJ 0.13 0.16 0.37 0.37 0.22 0.19 0.28

# 964 1621 2830 3159 1675 244 10493
SV 0.50 0.72 0.47 0.46 0.58 0.36 0.52

1–2 m SVJ 0.29 0.46 0.43 0.39 0.42 0.29 0.41
SVCJ 0.31 0.36 0.48 0.44 0.48 0.58 0.44

# 552 668 1446 2027 998 303 5994
SV 0.75 1.04 0.54 0.41 0.71 0.55 0.60

2–3 m SVJ 0.49 0.72 0.45 0.36 0.53 0.44 0.47
SVCJ 0.46 0.51 0.46 0.42 0.66 0.84 0.51

# 635 482 861 1430 905 474 4787
SV 1.12 1.31 0.73 0.62 0.92 0.97 0.87

3–6 m SVJ 0.74 0.89 0.56 0.57 0.83 0.88 0.70
SVCJ 0.60 0.71 0.65 0.76 1.15 1.42 0.85

# 354 289 390 598 516 609 2756
SV 1.61 1.55 1.32 0.94 1.23 1.53 1.33

>6 m SVJ 0.92 0.95 0.95 1.00 1.26 1.67 1.17
SVCJ 0.78 0.99 1.10 1.46 1.79 2.47 1.56

# 3718 5683 8833 10373 5492 1791 35890
SV 0.65 0.67 0.51 0.49 0.63 0.93 0.58

All SVJ 0.39 0.42 0.43 0.43 0.52 0.92 0.46
SVCJ 0.37 0.35 0.48 0.52 0.68 1.46 0.54

the option implied volatility of volatility and the variability in the estimated
volatility series reported elsewhere, cannot be replicated here.

Some reflections on this result are in order. First, the MCMC estimator ex-
plicitly imposes the time-series constraint of the volatility dynamics through
the likelihood function of the volatility path. This is also true for the full like-
lihood estimates in Bates (2000), however, Bates uses about 10 times as many
option prices as here and about 1/3 as many time-series observations. Hence, in
his analysis, the likelihood function is much more heavily influenced by option
prices than the time-series dynamics. The converse is true here so the restric-
tions are much more likely to hold true. Second, Jacquier et al. (1994) show that
their MCMC method provides much more erratically behaving volatility paths
than other methods based on Kalman filtering, and quasi-maximum likelihood
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Table VIII
Estimates of σV from Filtered Volatility Series

The table reports posterior means and standard deviations (in parenthesis) of estimates of σV from
posterior simulations of the latent spot volatility, Vt. Estimates are obtained as the mean square
errors of

eg
t =

V g
t − V g

t−1 − κ g
(
θ g − V g

t−1

)
− zV , g

t√
V g

t−1

across posterior simulations, g = 1, . . . , G. Parameter estimates correspond to a unit of time defined
to be one day, and returns data scaled by 100.

SV SVJ SVCJ SVSCJ

Mean 0.202 0.198 0.151 0.134
SD 0.005 0.004 0.005 0.007

methods. Still, this is likely to play less of a role in explaining the difference be-
tween the results reported here and those in Bates (2000) because the volatility
paths are estimated much more precisely than what is typically the case from
returns data only.

The MCMC estimator employed here enables the investigator to obtain his-
torical estimates of the Brownian increments �WS

t = Wi
t − Wi

t−1 for i = {S, V},
the continuously arriving shocks to prices and volatility. These can be inter-
preted as the model standardized “residuals.” Figure 4 plots these residual for
returns. It is evident from these plots that the jump models fare far better in
explaining large stock price movements than do the simple SV model. For ex-
ample, the −22% crash of October 19, 1987 and the 6% drop on October 13, 1989
produce too large return residuals relative to the prevailing market volatility
at the times, to be consistent with the SV model. The SVJ model also has prob-
lems explaining the large market movements, and produces surprisingly large
residuals for the same dates. In a nutshell, the reason for the large residuals is
that the SVJ model partly fails to identify the large negative returns on these
dates as jumps. This is again related to the fact that the unconditional jump
probability, λ, is estimated to be so low. For the SVCJ and SVSCJ models, this
changes because the large simultaneous moves in prices and volatility on these
dates makes the algorithm identify these dates as “jump dates” in spite of the
low unconditional jump probability. Hence, the return residuals shown for the
SVCJ model in Figure 4 are not too different from what can be expected under
the assumed N(0, 1) distribution.

Figure 5 plots the estimated (Brownian) shocks to the volatility process. As
is well known, the infamous crash of 1987 had a huge impact on option prices
across all maturities, especially in the days following the crash. The effect on
the estimated, latent spot volatility is a huge jump in volatility. Regardless of
whether such jumps are specified as part of the model, or not, the estimated spot
volatility increases dramatically on the day of the crash. The SVSCJ and SVCJ
models attribute this large increase to jumps in volatility and consequently
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Figure 4. Return residuals. The figures show standardized innovations in log returns from
estimates based on the joint data set of options and returns.
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Figure 5. Volatility residuals. The figures show standardized innovations in volatility from
estimates based on the joint data set of options and returns.
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Table IX
Residual Skewness and Kurtosis

The table reports skewness and kurtosis for estimated residuals (i.e., daily Brownian increments)
for returns and volatility, respectively. The table contains posterior means, standard deviations (in
parenthesis), and 99% credibility intervals (in square brackets).

SV SVJ SVCJ SVSCJ

Return Residuals
Skewness −1.891 −0.692 −0.129 0.138

(0.088) (0.294) (0.060) (0.707)
[−2.078, −1.709] [−1.633, −0.364] [−0.240, −0.016] [−0.068, 0.532]

Kurtosis 20.352 7.223 3.959 3.757
(1.121) (3.282) (0.267) (1.321)

[18.083, 22.615] [4.525, 18.630] [3.563, 4.620] [3.244, 5.798]

Volatility Residuals
Skewness 2.487 2.045 −0.300 −0.446

(0.290) (0.249) (0.134) (0.220)
[1.940, 3.194] [1.475, 2.638] [−0.564, −0.068] [−0.782, −0.058]

Kurtosis 27.758 19.256 6.017 5.616
(4.515) (3.076) (0.693) (1.596)

[19.876, 38.507] [13.687, 28.204] [4.337, 7.700] [4.190, 8.036]

produce plausible residual values. The SV and SVJ models produce residuals
which are about 10 standard deviations from zero. Hence, these models require
implausibly large Brownian volatility increments to deal with the market data
from October 1987.

Interestingly, all four models generate too large negative movements in the
days following the 1987 crash. Indeed, allowing for jumps to volatility in the
SVCJ model does not explain the fall in spot volatility following the huge in-
crease on the day of the crash. The reason is that the volatility jumps are
restricted to be positive.

Finally, Table IX quantifies the magnitudes of the model violations discussed
above through the posterior distributions of sample skewness and sample kur-
tosis in the residual series. The numbers confirm our conclusions from studying
the residual plots: the residuals do not conform to the assumed normal distri-
bution, although the magnitude of the violations is less for the jump models and
least for the SVCJ model. Notice that the SVCJ model does markedly better
in capturing the tails of both returns and volatility, and produces a residual
kurtosis with a lower first percentile of 3.56 and 4.33, respectively.

V. Concluding Remarks

The models considered in this paper do a reasonable job of fitting option prices
in-sample. Somewhat surprisingly, models with complicated jump components
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do not seem to improve markedly upon the simpler stochastic volatility (Heston)
model. This is reflected in the jump arrival intensities that are estimated to be
relatively small.

Out-of-sample, pricing errors are found to increase in magnitude as time
increases. This is related to a high estimate of the unconditional, long-term
volatility reflected in parameter estimates obtained over the highly volatile
estimation period. An exception here is the SVSCJ model for which the op-
tion implied mean reversion speed of volatility is found to be less than for
the other models. This negates the effect of the high long-term volatility, and
consequently improves out-of-sample performance. Ad hoc parameter adjust-
ments to the long-term volatility coefficients, or the mean reversion speed, will
improve upon the out-of-sample performance. Such adjustments, of course, are
not compatible with the underlying structural models, and should consequently
be viewed as model diagnostics only. To this end, the reported model violations
are suggestive of models, which allow for multiple factors to explain the varia-
tions in the moneyness and term structure of option premiums. These findings
may not seem too surprising: In the fixed income literature, it is widely upheld
that one needs at least three factors to accurately capture the term structure of
bond yields over time. If this is viewed as an exercise in “shooting at a moving
two-dimensional object,” option pricing is an even more difficult exercise if the
object of interest is a three-dimensional one with the relative prices over differ-
ent strikes (moneyness) being the additional dimension. With this perspective,
it is not unreasonable to imagine that multifactor volatility representations
may provide better fit to the data.

Another model extension, which may prove empirically warranted, is one in
which the volatility is allowed to mean revert at a different speed depending
on its level. Such models have shown some success in modeling interest rates
(i.e., Aı̈t-Sahalia (1996)). The sharp decline of option implied spot volatility fol-
lowing the extreme peak caused by the 1987 crash would be indicative of such
a model. This is also consistent with near unit root behavior of volatility in pe-
riods of relatively calm markets implicit in the out-of-sample results presented
here.

The models considered in this paper are fairly successful in fitting the time-
series dimension of the data. In fact, the results presented here suggest that
the price and volatility dynamics implicit in the joint data are fairly consis-
tent with the more general models under consideration. The models that allow
for volatility jumps do a very decent job of explaining the time variations in
volatility, as well as the dynamics of volatility itself. With respect to the latter,
these results are at odds with previous evidence suggesting that options imply
a volatility-of-volatility is too high to be consistent with time-series dynamics
of estimated volatility series. This finding cannot be attributed to the addition
sophistication of the jump in volatility models: The finding holds equally for the
Heston SV model. While different data may explain some of these differences,
this paper uses posterior simulations for the latent volatility. This is a very
important difference from previous work.
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