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a b s t r a c t 

We study the returns to investing in VIX futures, VIX Exchange Traded Notes (ETNs), and 

variance swaps. We document substantial negative return premia for these assets. For ex- 

ample, the constant maturity portfolio of 1-month VIX futures loses about 30% per year 

over our sample period (2006–2013). We investigate if these findings are consistent with 

dynamic equilibrium. We derive a model based on present value computation that en- 

dogenizes stock prices, the VIX index, and its associated derivative contracts. The model 

explains the negative return premia as well as several other stylized features of the VIX 

futures, ETNs, and variance swap data. 

© 2017 Published by Elsevier B.V. 
1. Introduction 

In 2004, the Chicago Board Options Exchange (CBOE) 

Futures Exchange introduced cash settled futures contracts 

on the CBOE VIX volatility index. While initially sparsely 

traded, the VIX futures market has become very liquid in 

recent years. In addition to the futures market itself, since 

2009, more than a dozen VIX futures Exchange Traded 

Notes (ETNs) have been introduced, allowing retail in- 

vestors to trade VIX futures through regular brokerage 
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accounts. The ETNs follow simple, pre-specified, dynamic 

trading programs, and in most cases offer constant matu- 

rity exposure to n -month futures positions. 

The interest in VIX futures and ETNs trading is due at 

least in part to the perceived positive diversification bene- 

fits of the contracts. The CBOE notes through various mar- 

keting materials that the VIX correlates negatively with the 

Standard & Poor’s (S&P) 500 returns and therefore provides 

diversification benefits. The CBOE’s own estimates of the 

VIX-return correlation range from −75% to −86% . Addition- 

ally, since the VIX is significantly more volatile than the 

S&P 500 itself, the VIX, and thus VIX futures, have sub- 

stantial negative market betas. 

The first objective of our paper is to provide descriptive 

statistics on the average returns to VIX futures positions 

and the associated ETNs. Szado (2009) ; Alexander and Ko- 

rovilas (2012) , and Whaley (2013) report negative annu- 

alized VIX futures returns. We collect futures data from 

http://dx.doi.org/10.1016/j.jfineco.2017.04.007
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January 2006 to May 2013 and confirm these findings. For

example, if someone invested in VIX futures in January

2006 and rolled the position at end-of-day futures prices

reported by the CBOE, she would have lost more than 97%

of the initial investment by the end of March 2013. This

corresponds to an annualized return of about −30% . This

number is staggering considering that during the first part

of the sample period the investor would have more than

doubled the initial investment through the peak of the

2008 financial crisis. Not surprisingly, the VIX ETNs per-

form as badly, if not worse, than the underlying futures.

In fact, since the first two VIX ETNs were introduced on

January 30, 2009, the VXX and VXZ, which offer expo-

sure to short and medium term futures, respectively, have

lost an average of 34 and 14 basis points per day (simple

returns). 

The second and major objective of our paper is to ask:

are the negative average returns consistent with returns

from a present value based equilibrium model? Specifi-

cally, we use the equilibrium model of Eraker and Wang

(2015) to derive equilibrium VIX futures prices. This model

is based on a dynamic present value framework where

investors discount a distant cash flow using time-varying

discount rates. We show that the model produces a siz-

able volatility risk premium. To understand where this pre-

mium is coming from, we detail the main ingredients of

the model here. 

The large negative return premium to volatility assets

in our model is linked to the volatility feedback effect. The

fact that volatility shocks and stock prices are strongly neg-

atively correlated is well known, and many authors have

suggested this is caused by a volatility feedback effect.

For example, French et al. (1987) conclude “...we inter-

pret this negative relation as evidence of a positive rela-

tion between risk premia and ex ante volatility.” Campbell

(1991) suggests decomposing realized returns into revi-

sions in expected cash flows and revisions in expected dis-

count rates, or expected rates of return. Any model based

on present value computation that has time-varying ex-

pected rates of return will, according to Campbell’s decom-

position, have an endogenous negative correlation between

shocks to expected returns and realized returns. Our model

implies that expected returns are proportional to a time-

varying variance factor. Shocks to this variance factor cor-

relate negatively with returns and the magnitude of the

correlation depends on the representative agent’s risk aver-

sion. 

A primary objective in our analysis is to fully endoge-

nize this negative correlation. To see why this is important,

note first that prices of volatility derivatives, such as VIX

futures, depend positively on spot volatility. Since volatil-

ity negatively correlates with stock prices, volatility claims

are negative beta assets. Since volatility claims have neg-

ative market beta it is useful to consider a Capital Asset

Pricing Model (CAPM) style equilibrium: in order to de-

liver a large negative premium for volatility assets they

would need to be negatively correlated with the market

portfolio. Since the prices of volatility derivatives are pos-

itive increasing functions of spot market volatility, a key

component in generating a negative risk premium is that

spot volatility itself is negatively correlated with the mar-
ket. Our model does this, and our baseline specification

generates a volatility-return correlation of −0 . 61 at the es-

timated parameter values. 

Both diffusive and jump shocks to cash flow volatil-

ity are priced in equilibrium and the market price of risk

is a function of risk aversion and the “deep” parameters

that govern the dynamics of volatility. Rather obviously,

the market price of volatility risk depends on the param-

eters that govern the size of volatility shocks. Also, impor-

tant to note, it is inversely related to the speed of volatility

mean reversion. Intuitively, investors demand a higher risk

compensation when shocks to volatility have a longer last-

ing effect. This is analogous to long run risk models. 

The model generates an upward sloping equilibrium fu-

tures curve (contango) in steady-state. This means that, ce-

teris paribus, investors who purchase VIX futures pay more

than the value of the spot VIX at expiration of the futures

contract, on average. The equilibrium model produces a

negative premium in all states of the world, whether or not

the VIX is above or below its steady-state value. Even if the

futures curve is in backwardation (downward sloping), the

futures may imply a negative risk premium because the

physical speed of mean reversion will be faster than the

Q measure speed of mean reversion implicit in the futures

prices. These pricing implications are entirely equilibrium

outcomes. If the representative agent in the model is risk

neutral, none of these pricing implications hold. In partic-

ular, there is no volatility risk premium, the steady-state

futures curve is essentially flat, and the expected return on

VIX futures is zero. 

Our paper is connected to the extant literature in sev-

eral ways. Our theoretical model is related to long run

risk models ( Bansal and Yaron, 2004 ) that deliver large

volatility risk premia such as those of Eraker and Shalias-

tovich (2008) and Drechsler and Yaron (2011) . Other the-

oretical justifications for large volatility risk premia in-

clude the heterogeneous beliefs model of Buraschi et al.

(2014) . Bollerslev et al. (2009) ; Andersen and Todorov

(2013) among others show that the volatility risk premium

can predict stock market returns. Eraker (2012) shows that

a large volatility risk premium is consistent with large neg-

ative equity options returns such as those found empir-

ically in Bondarenko (2003) ; Bakshi and Kapadia (2003) ,

and Eraker (2013) , among others. Broadie et al. (2007) con-

clude that jump-risk premium, not volatility risk premium,

is the primary driver of risk premia in option returns. Re-

cently, Andersen and Todorov (2013) proposed a model

with a self-exciting jump process but find that this “tail

factor” has no incremental power in predicting equity re-

turn above the level of volatility itself. This empirical find-

ing lends support to the specification of models in which

jump-risks are not disentangled from the diffusive vari-

ance, as in our model. 

In our model, jump and volatility risk premia are ob-

tained endogenously and both are increasing in the level

of risk aversion. Simplified, if agents are risk averse, they

care about the volatility of future cash flows. Their aver-

sion toward high volatility is similar across diffusive and

jump driven increments to volatility. Yet, the equilibrium

price process we use has characteristics that are sim-

ilar to existing reduced-form, no-arbitrage models. Our
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most general model has a two-factor volatility specification 

where jumps in the volatility endogenously lead to nega- 

tive jumps in the equilibrium price. This is similar, but not 

identical to, the volatility co-jump models in Duffie et al. 

(20 0 0) ; Eraker et al. (2003) ; Bandi and Reno (2012) , and 

Andersen and Todorov (2013) where the correlations be- 

tween volatility and prices are assumed. 

While our paper, to our knowledge, is the first to at- 

tempt a structural explanation for the negative VIX fu- 

tures return premium, several papers fit statistical models 

to futures prices and judge the resulting empirical model 

fit using root-mean-square error (RMSE) or other distance 

metrics based on the difference between the model and 

market prices. For example, Zhang and Zhu (2006) an- 

alyze the model fit based on Heston (1993) , while ( Lin, 

2007 ) and ( Zhu and Lian, 2012 ) analyze models in the 

more general class of Duffie et al. (20 0 0) . These papers 

generally conclude that models with more complicated 

volatility dynamics (i.e., jumps) produce better statistical 

fit. Egloff et al. (2010) find that the two-factor model of 

Bates (20 0 0) outperforms Heston’s model. Some studies 

from related markets include Song (2012) who studies re- 

turns on VIX options. He finds that both diffusive volatility- 

of-volatility and volatility jumps are important in capturing 

VIX option returns. Carr and Wu (2006) study a sample of 

returns to variance-swap contracts. Their sample, collected 

from 1990 to 2005, contains strikingly large positive (neg- 

ative) returns to sellers (buyers) of variance swaps. 

In our empirical examination we first confirm the large 

negative returns to VIX futures reported elsewhere. We 

verify that the negative returns to futures translate into 

correspondingly negative returns to VIX ETNs that invest 

in long positions. The returns are particularly bad for short 

maturity futures and VIX ETNs. Yet, we show that our equi- 

librium model is generating returns that are almost iden- 

tical to those we observe in our sample. In our empiri- 

cal implementation, we first estimate our return equilib- 

rium model. This is done using Bayesian Markov chain 

Monte Carlo (MCMC) sampler, extending the method in 

Eraker et al. (2003) to a structural setting. The advantage of 

the structural model is that we estimate the risk aversion 

of the representative agent from returns data alone. We 

therefore recover the pricing kernel without the use of ad- 

ditional data from derivatives markets. This contrasts em- 

pirical studies of reduced-form, no-arbitrage models that 

simultaneously use derivatives and returns data to back 

out market risk prices, as in Pan (2002) ; Chernov and Ghy- 

sels (20 0 0) ; Eraker (20 04) ; Andersen and Todorov (2013) , 

and Jackwerth and Vilkov (2014) . 

We show that the equilibrium model can explain the 

negative returns to VIX futures and VIX ETNs almost ex- 

actly. In particular, the model that includes volatility jumps 

fits all moments of maturities that are less than 4 months. 

For 4- and 5-month futures, the model underestimates the 

variability (standard deviation) of the futures returns. We 

argue that the model’s inability to account for the return 

standard deviation of longer maturity contracts is consis- 

tent with similar model failures in the affine term struc- 

ture literature in capturing low frequency movements. We 

demonstrate that a generalized model that allows for a 

second volatility factor (i.e., a “central tendency” factor) 
can be calibrated such that all the moments of the VIX fu- 

tures data are matched. 

The rest of the paper is organized by the following. 

In the next section we present basic descriptive evidence 

on the returns to VIX futures contracts and VIX ETNs. 

Section 3 presents the equilibrium framework and struc- 

tural parameter estimates. Section 4 presents our em- 

pirical evaluation of the model and compares it to data 

on VIX futures and VIX ETNs as well as variance swaps. 

Section 5 concludes. 

2. VIX futures and ETN returns 

In the following section we provide descriptive evi- 

dence of the statistical behavior of VIX futures and ETNs. 

We start with the futures. Before presenting the evidence, 

it is worthwhile noting that there are some subtle issues 

involved in measuring the average returns of VIX futures. 

In particular, the futures price, like the VIX itself, is ex- 

tremely volatile. The return distribution also displays right 

skewness: as the VIX occasionally jumps, a long futures 

position provides a large positive return. High frequency 

estimates of average arithmetic returns are upward biased 

estimates of long horizon buy and hold returns (see Blume, 

1974 ). We therefore report, in addition to the arithmetic 

returns, the mean log-returns as well as the annualized ge- 

ometric returns. These are defined as follows: let V t rep- 

resent a time t value of a portfolio that rolls a futures 

position at daily closing prices. We compute V t = V t−1 (1 + 

r p (t)) where 

1 + r p (t) = w t−1 
F t (T 1 ) 

F t−1 (T 1 ) 
+ (1 − w t−1 ) 

F t (T 2 ) 

F t−1 (T 2 ) 
(1) 

T = w t (T 1 − t) + (1 − w t )(T 2 − t) . (2) 

r p ( t ) is the return of the portfolio at day t . The portfolio in-

volves two VIX future contracts: a front-month future with 

expiration date T 1 and price F t ( T 1 ), and a next-month fu- 

ture with expiration date T 2 and price F t ( T 2 ). The portfolio

keeps a constant maturity T by rolling the front-month fu- 

ture to the next-month future on a daily basis. w t is the 

weight in the front-month future after the rolling at the 

end of day t . When w t goes to zero, the next-month future 

becomes the front-month future and the next rolling cycle 

starts. For example, the n -month constant maturity portfo- 

lio rolls the n th-month future to the (n + 1) th-month fu- 

ture. 

We report the average daily arithmetic return, 

R 

1 := 

1 

T 

∑ 

t 

r p (t) , 

the average daily log-return, 

R 

2 := 

1 

T 

∑ 

t 

ln (1 + r p (t)) , 

as well as the annualized geometric return 

R 

3 := 

(
V T 

V 0 

) 252 
T 

− 1 . 

While the geometric return is known to be biased for 

the expected annual return ( Blume, 1974 ), it represents a 
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Table 1 

VIX futures return descriptive statistics. This table reports the summary statistics of returns to 

rolling positions in VIX futures. The sample data are at daily frequency from Jan 2006 to May 

2013. R 1 is the daily average arithmetic return, R 2 is the daily average logarithmic return, and 

R 3 is the average, annualized geometric return. Standard deviation, skewness, and kurtosis are 

from daily arithmetic returns. Return numbers are in percent. 

Maturity R 1 R 2 R 3 Std Skewness Kurtosis 

1 Month −0.12 −0.20 −39.40 3.98 0.83 6.42 

2 Month −0.07 −0.11 −24.65 3.00 0.62 6.02 

3 Month −0.01 −0.04 −10.15 2.47 0.66 6.11 

4 Month −0.03 −0.05 −12.09 2.21 0.79 7.28 

5 Month −0.01 −0.03 −7.33 2.01 0.70 6.90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

monotonic transformation of the total return over the sam-

ple period and we include it for this reason. 

Table 1 presents measures of return and higher order

return moments. Though introduced in 2004, low liquid-

ity in the first 2 years leads us to start the sample in

January 2006. As can be seen from the table, VIX futures

averaged negative returns over the sample period. Largest

were the losses for the short-term maturity futures, with

1-month contracts losing an average of 12 basis points per

day which roughly annualizes to 252 × −0 . 12% = −30% . In

terms of log-returns the 1-month futures averaged -20 ba-

sis points per day, or −50 . 4% annually. The annualized ge-

ometric return was −39 . 4% . The returns tend to increase

with maturity, and the 5-month contract loses a compa-

rably small amount, with “only” −7 . 33% per annum ge-

ometric average loss. Both the average loss for the short

maturity contracts, as well as the comparably smaller loss

for the long maturities are interesting features of the data.

These features of the data are seen in Fig. 1 which plots

the value and log-value of a dollar invested in rolled posi-

tions in VIX futures on January 3rd, 2006. 

In order to get a first pass at whether or not the re-

turns are consistent with an equilibrium story, we com-

pute α’s using the standard Fama–French risk factors as

well as a VIX-return factor. This factor is computed by sort-

ing the Center for Research in Security Prices (CRSP) stocks

on their exposure, βVIX , with respect to changes in the VIX

index. We follow the standard Fama–French approach and

compute the VIX factor (VF) as the return to the largest

minus the smallest βVIX quintile portfolio. 1 

The results are reported in Table 2 . As can be seen,

all specifications give rise to large negative α’s. The short

maturity one- to 2-month α’s are statistically significantly

negative while the longer maturities are not. We also re-

port tests of the null hypothesis αi = 0 ∀ i = 1 , ..., 5 which

are rejected for all model specifications. Note that while

VIX futures have large positive betas with respect to the

VIX factor (bottom panel), the coefficients are close to zero

for the specifications that include the CRSP value-weighted

(MKT) factor. This is due to collinearity between VF and

other factors. In particular, VF has a −93% correlation with

MKT returns and 70% correlation with daily changes in the

VIX index. 
1 At the beginning of each calendar year, all CRSP stocks are sorted into 

five portfolios based on their exposure to the changes in the VIX index for 

the past 2 years. The VIX factor is the equal-weighted return of the first 

quintile portfolio minus that of the fifth quintile portfolio. 

 

 

 

 

 

 

To understand where the negative returns come from,

we present the average values of the VIX spot and the var-

ious maturity futures over the sample period in Table 3 .

This table shows that on average, the futures curve is in

contango and prices monotonically increase with matu-

rity of the contract. This, mechanically, is the reason why

long positions in VIX futures lose money on average. Con-

sider, for example, an investor who buys a 1-month con-

tract and holds it until it expires. Her average return would

be 20 . 57 / 21 . 48 − 1 = −4 . 24% per month, or −40 . 52% per

year when compounded. This is close to the annually av-

erage compounding geometric return in Table 1 . Similarly,

the annualized average 1-month holding period returns for

2–7-month contracts are reported in the row labeled “Im-

plied return” in Table 3 . While not identical, the numbers

are on the same order of magnitude as the actual returns

reported in Table 1 . This shows that in order to under-

stand why the returns to VIX futures are so low, we must

understand why the futures curve is on average severely

upward sloping in the data. An equilibrium explanation

for the negative returns, therefore, will need to generate

a sharply upward sloping steady-state futures curve. 

2.1. Returns to ETNs 

The first Exchange Traded Notes (ETNs) linked to VIX

futures were introduced in January 2009. Table 4 gives an

overview of the characteristics of various VIX ETNs. The

VXX and VXZ offer long exposures to 1- and 5-month fu-

tures, respectively. Large negative returns earned on VIX

ETNs are often considered a result of their unfortunately

timed inception. It is not true, however, that the deci-

mation of these securities’ values is solely a consequence

of the directional move in the VIX over the sample pe-

riod. This is evidenced by the fact that these securities

also lose value during periods of no change in the under-

lying VIX index. For example, during the period March 1,

2010 to June 21, 2012, the VIX went from 19.26 to 20.08,

a marginal positive change, but the VXX lost 82.74% of its

value over this sample period while the VXZ lost 29.21%.

Clearly, the directional move in the VIX was not the reason

why the VXX lost almost 83% of its value over this period!

The performance of the VIX ETNs is closely tied, if not

identical, to the performance of the synthetic portfolio that

rolls futures positions at daily closing prices according to

Eqs. (1) and (2) . To see this, Fig. 2 shows the log value

of our synthetic 1-month portfolio alongside VXX’s log net

asset value. As observed, the two are highly correlated
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Fig. 1. Value of portfolios that roll the futures contracts at closing prices. Top: value of $1 invested in Jan 2006. Bottom: log-value of $1 invested in Jan 

2006. 
and essentially identical with the exception that the VXX 

depreciates at a slightly higher rate over the sample pe- 

riod. Specifically, the annualized geometric return to the 

VXX is −65 . 33% vs. −64 . 78% for the synthetic portfolio. 

The difference is only about 0.55% per year, of which 0.89% 

comprises its management fee. The remaining −34 basis 

points are presumably due to differences in execution be- 

tween the VXX and our synthetic portfolio. 

It is also interesting to study the relative performance 

of the three ETNs, VXX, TVIX, and XIV, which span the 

1-month space with single long, double long, and single 
short positions, respectively. Since the TVIX and XIV can be 

replicated by trading in the VXX, we compute the terminal 

values of the replicating portfolios and compare them to 

the respective terminal values of the XIV and TVIX. These 

results are reported in Table 5 . We use two performance 

measures, G 1 and G 2. G 1 denotes the total return differ- 

ence (annualized) between actual trade price of TVIX and 

XIV and the value of synthetic securities. G 2 denotes the 

corresponding differential based on the net asset value. 

The TVIX does about 161 basis points better than the syn- 

thetic security of VXX per annum based on the net asset 
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Table 2 

Factor regressions. 

Using the VIX futures logarithmic returns, this table reports the intercept and the betas of factor regressions including our VIX 

factor, VF, and the Fama–French factors MKT, SMB and HML. t ( α) denotes a standard t -test of the null hypothesis α = 0 . ϑn is 

a test statistic for the null hypothesis, α = 0 for all maturities (see Campbell et al., 1997 ), and p ( ϑ) is the associated p -value. 
∗ , ∗∗ , ∗∗∗ denote the estimate is statistically significant at 10%, 5%, and 1% level, correspondingly. 

α t ( α) VF MKT SMB HML 

Full model, H 0 : α = 0 , ϑ n = 3 . 98 , p(ϑ n ) = 0 . 00 

1 Month −0.17 ∗∗∗ −2.86 −0.38 ∗∗ −2.35 ∗∗∗ −0.70 ∗∗∗ 0.20 ∗∗

2 Month −0.08 ∗∗ −1.90 −0.14 −1.68 ∗∗∗ −0.33 ∗∗∗ 0.11 ∗

3 Month −0.02 −0.61 −0.07 −1.35 ∗∗∗ −0.19 ∗∗∗ 0.06 

4 Month −0.03 −0.99 −0.16 ∗ −1.28 ∗∗∗ −0.16 ∗∗∗ 0.07 

5 Month −0.01 −0.43 −0.14 ∗ −1.07 ∗∗∗ −0.21 ∗∗∗ 0.04 

VF, MKT, H 0 : α = 0 , ϑ n = 3 . 99 , p(ϑ n ) = 0 . 00 

1 Month −0.17 ∗∗∗ −2.89 0.15 −1.97 ∗∗∗

2 Month −0.08 ∗∗ −1.93 0.10 −1.51 ∗∗∗

3 Month −0.02 −0.64 0.08 −1.25 ∗∗∗

4 Month −0.03 −1.01 −0.04 −1.19 ∗∗∗

5 Month −0.01 −0.45 0.03 −0.96 ∗∗∗

MKT, H 0 : α = 0 , ϑ n = 3 . 99 , p(ϑ n ) = 0 . 00 

1 Month −0.17 ∗∗∗ -2.89 −2.08 ∗∗∗

2 Month −0.09 ∗∗ -1.93 −1.58 ∗∗∗

3 Month −0.02 -0.64 −1.30 ∗∗∗

4 Month −0.03 -1.01 −1.16 ∗∗∗

5 Month −0.01 −0.46 −0.98 ∗∗∗

VF, H 0 : α = 0 , ϑ n = 3 . 85 , p(ϑ n ) = 0 . 00 

1 Month −0.17 ∗∗∗ −2.69 2.52 ∗∗∗

2 Month −0.09 ∗∗ −1.80 1.92 ∗∗∗

3 Month −0.02 −0.61 1.58 ∗∗∗

4 Month −0.03 −0.95 1.39 ∗∗∗

5 Month −0.02 −0.45 1.18 ∗∗∗

Table 3 

Average VIX futures prices. 

This table reports the summary statistics of the extrapolated constant maturity (1–7-month) VIX futures. “Implied return” is 

the annualized 1-month holding period return of the VIX future contract based on the average VIX future term structure. The 

sample data are at daily frequency from March 2004 to May 2013. 

Futures maturity 

Spot 1 2 3 4 5 6 7 

Mean 20.57 21.48 22.10 22.45 22.70 22.94 23.14 23.29 

Median 17.61 19.51 20.94 21.80 22.31 22.75 23.19 23.44 

Std. dev. 10.11 8.79 8.05 7.51 7.13 6.87 6.68 6.52 

Implied return −40.52% −28.93% −17.18% −12.44% −11.86% −9.89% −7.46% 

Eigenvalues of the correlation matrix 

6.85 0.14 0.01 0.00 0.00 0.00 0.00 

Table 4 

Investment objectives and descriptive statistics for selected VIX ETNs. 

This table summarizes investment objectives and performance of some VIX Exchange Traded Notes (ETNs). The benchmarks for 

VIX ETNs with 1-month and 5-month horizons are VIX Short-Term Futures Index and VIX Mid-Term Futures Index, respectively. 

The leverage of VIX ETN reflects the return objective as a multiple (1x, 2x) or an inverse multiple (-1x) times the performance 

of its benchmark on a daily basis. r̄ and ˆ Std (r) are the average and standard deviation of daily arithmetic returns in percent, 

respectively. 

Ticker First date Leverage Horizon r̄ ˆ Std (r) 

VXX 29-Jan-2009 1x 1 Month −0.34 3.94 

VXZ 29-Jan-2009 1x 5 Month −0.14 2.00 

TVIX 30-Nov-2010 2x 1 Month −0.67 8.06 

TVIZ 30-Nov-2010 2x 5 Month −0.38 4.20 

VIIX 30-Nov-2010 1x 1 Month −0.30 4.27 

VIIZ 30-Nov-2010 1x 5 Month −0.19 2.08 

XIV 30-Nov-2010 −1x 1 Month 0.25 4.27 

ZIV 30-Nov-2010 −1x 5 Month 0.15 1.99 

VIXY 04-Jan-2011 1x 1 Month −0.26 4.34 

VIXM 04-Jan-2011 1x 5 Month −0.17 2.12 

IVOP 19-Sep-2011 −1x 1 Month 0.22 2.95 

UVXY 04-Oct-2011 2x 1 Month −1.13 8.57 

SVXY 04-Oct-2011 −1x 1 Month 0.49 4.33 
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Fig. 2. Log-value of the VXX and a synthetic 1-month rolling VIX futures position. 

Table 5 

VIX ETN relative performance. 

This table compares the performance of the XIV and 

TVIX stocks to their synthetic securities using VXX re- 

turns. The returns on TVIX are related to the VXX 

through r TVIX 
t = 2 × r VXX 

t and the returns on XIV are 

r XIV 
t = −r VXX 

t . We use these relationships to construct 

synthetic TVIX and XIV and compare the prices and fair 

values of each security to the corresponding synthetic 

security. Gi is defined as the annualized geometric gain 

relative to the synthetic security, Gi = (P T,i /P s 
T,i 

) 252 /T − 1 

where i = 1 , 2 represents actual trade price and net as- 

set value, respectively and P s 
T,i 

denotes the ending value 

of the synthetic security created from VXX returns with 

P s 
0 ,i 

= P 0 ,i . 

G1 G2 

TVIX 3.36 1.61 

XIV −1.80 −1.90 
value. Based on the actual trade price, VXX gains 336 basis 

points on the synthetic counterpart. The XIV loses 180 and 

190 basis points. 
Table 5 reveals that the market value of the TVIX tends 

to deviate from its net asset value. Most VIX ETNs tend to 

track their net asset values relatively closely. The TVIX is 

an exception to this, and this stock has at times traded sig- 

nificantly above its net asset value. In particular, on March 

21, 2012, the TVIX was traded 89% above its net asset value 

after the issuer, Credit Suisse, had announced it would stop 

share issuance. On March 22, Credit Suisse announced that 

it would issue more shares, resulting in a collapse in the 

spread between the price and the net asset value. The 

stock lost almost 60% of its value over the next 2 days. The 

stock has traded about 8% above fair value on average since 

then. 

The sharp increase in the price of the TVIX from July 

2011 seen in Fig. 3 was caused by the second Euro- 

pean sovereign debt crisis during which the VIX increased 

sharply from about 20 to 47 while the S&P 500 dropped 

about 28%. Anecdotal evidence suggests that there is a high 

retail investors’ demand for long ETNs as they provide neg- 

ative market betas and therefore act as a hedge against 

financial crisis. VIX futures, in particular the double long 

TVIX and UVXY ETNs, provide hedges against financial cri- 
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Fig. 3. Top: price of the TVIX and its Net Asset Value (NAV). Bottom: the relative difference between price and NAV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T T  
sis regimes. This mechanism is essential in the equilibrium

model. 

3. An equilibrium model of VIX futures 

In the following section we outline an equilibrium

framework to understand and analyze the returns to VIX

futures, their ETNs, and variance swaps. Our model aims

to explain how VIX futures earn high negative expected re-

turns. We take a first pass at this by estimating the (nega-

tive) beta of the futures returns and see whether the CAPM

can explain the returns. With a beta of −2 and a market

risk premium of 5% to 7.5%, we end up at a return pre-

mium of −10% to −15% if we assume a zero risk free rate,

which is approximately right for the latter part of the sam-

ple period. The negative beta version gives us the right

sign, but the CAPM still explains only half or less of the

magnitude of the negative returns to 1-month VIX futures.

In the next section we develop a model that endogenizes

the negative volatility beta. 

3.1. Model 

To motivate the model, consider a simple one-period

model first. At date 0 agents trade claims to a single cash

flow, ˜ x 1 , paid one period later, at date 1. The price of the

claim is P 0 = E( ̃  x 1 ) /k where, by definition, the discount

rate k is the expected rate of return. Since there is only one

period, risks associated with the terminal payoff ˜ x 1 map

one-to-one to risks associated with the return R m 

= ˜ x 1 /P 0 .

Thus, we can equivalently derive a model based on risks

embedded in ˜ x 1 or in R m 

. For example, if we endow a rep-

resentative agent with quadratic utility, we can derive the

Sharpe–Lintner single period CAPM and the expected rate
of return can be equivalently represented as a function of

the variance of R m 

or ˜ x 1 . 

We extend this simple equilibrium construction in the

following way. First, let the terminal time period be de-

noted T such that the terminal cash flow is ˜ x T . Second,

imagine that claims to ˜ x T can be traded in the capital mar-

ket at, say, N discrete times prior to and including the ter-

minal date T. P t represents the equilibrium price of the

claim to ˜ x T . There are two different shocks to the price–

cash flow shocks and discount rate shocks. 

To facilitate both types of shocks we imagine investors

eventually learn what the size and risk of the terminal

cash flow ˜ x T will be. Specifically, assume that the termi-

nal cash flow is a sum of independent increments, ln x T =∑ N 
i =1 εt i 

, where εt i 
represents the i th cash flow increment

t i = i � t for � t = T /N. A positive shock, εt i 
will have a pos-

itive impact on the price, and vice versa. 

In order to incorporate a time-varying discount rate, or

expected rate of return, we assume that the cash flow in-

crements have persistent time-varying stochastic volatility.

Previewing the results of our model, the expected rate of

return, or discount rate for the terminal cash flow, is an

increasing function of the volatility of the εt i 
s. Thus, if the

volatility of these cash flow shocks increases, the volatility

of ˜ x T is increased as well. If we think about today’s price

as the certainty equivalent of ˜ x T , it is clear that by increas-

ing its volatility, 1) we increase the volatility of the cur-

rent price, and 2) the price responds negatively. Both ef-

fects are important: the former introduces stochastic, time-

varying volatility into the stock price and the latter in-

troduces an endogenous leverage effect caused by volatility

feedback . 

We now leave the discrete time setup above in favor of

a continuous time economy. As before, agents trade claims

to a terminal cash flow ˜ x . We assume that ˜ x is the ter-
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t t t 
minal value of a stochastic process x which is exogenous, 

˜ x T = x T . We call a claim to ˜ x T “the stock market” and as- 

sume a unit net supply of stock and zero net supply of 

bonds. 

The cash flow is assumed to be the terminal value of x t 
which follows 

dx t 

x t 
= μd t + σt d B 

x 
t , (3) 

dσ 2 
t = κ(θ − σ 2 

t ) dt + σv σt dB 

v 
t + ξt dN t , (4) 

ξt ∼ Exp (μξ ) , (5) 

Corr (d B 

x 
t , d B 

v 
t ) = 0 . (6) 

σ t is the volatility of x t and is driven by a diffusion, B v t , and 

a compound Poisson process, ξ t dN t , where the counting 

process, N t , has Poisson arrivals with intensity l 0 . We as- 

sume that the parameters are chosen so that σ 2 
t is station- 

ary and positive. Under this setup, the (relative) cash flow 

shocks dx t / x t are uncorrelated and have persistent stochas- 

tic volatility σ t . Note that even when the planning horizon 

T − t is large, σ t impacts the variance of the terminal claim 

˜ x T . This follows because x t is a random walk. Thus, any in- 

crease in the variance of its increments will yield a higher 

variance of the terminal value x T . This is true even if T is 

large, and even if volatility persistence is low. With higher 

volatility persistence, this effect is magnified. 

3.2. Equilibrium stock prices 

Appendix A.3 derives the equilibrium price 

P t = 

E t { u 

′ ( ̃  x T ) ̃  x T } 
E t { u 

′ ( ̃  x T ) } e −(T −t) r . (7) 

Subject to regularity conditions, this equation applies gen- 

erally. It is analytically tractable in the case of exponential 

affine processes for x T and power utility, u ′ (x ) = x −γ . To 

see this, recall the main insight of Duffie et al. (20 0 0) . Let 

X t be an affine process with domain D ⊆ R 

N and let u be 

an N dimensional real vector. Then 

E t e 
u ′ X t+ τ = e α(u,t ,t + τ )+ β(u,t ,t + τ ) ′ X t (8) 

where the functions α : R 

N × R 

+ × R 

+ → R and β : R 

N ×
R 

+ × R 

+ → R 

N solve ordinary, first order differential equa- 

tions. 

By defining X t = 

{
ln x t , σ 2 

t 

}
and setting u 1 −γ = (1 −

γ , 0) and u −γ = (−γ , 0) in the numerator and denomina- 

tor of (7) , along with (8) , we have the price 

P t = 

E t 

{
e (1 −γ ) ln ̃ x T 

}
E t 

{
e −γ ln ̃ x T 

} e −r f (T −t) 

= 

e α(u 1 −γ ,t,T )+ β(u 1 −γ ,t,T ) ′ X t 

e α(u −γ ,t,T )+ β(u −γ ,t,T ) ′ X t 
e −(T −t) r f 

= x t e 
−r f (T −t)+ λ0 (t,T )+ λσ (t,T ) σ 2 

t , (9) 

where λσ ( t, T ) is the second component of the vector 

β(u 1 −γ , t, T ) − β(u −γ , t, T ) and λ0 (t, T ) = α(u 1 −γ , t, T ) −
α(u −γ , t, T ) . r f is the risk free rate. The stock return ac- 

cordingly is 

d ln P t = d ln x t + r f d t + 

∂λ0 (t, T ) 

∂t 
d t + 

∂λσ (t, T ) 

∂t 
σ 2 

t d t 
+ λσ (t, T ) dσ 2 
t . (10) 

Note that since the (log) return depends on λσ d σ t , diffu- 

sive shocks σv σt dB v t and jumps, ξ t dN t have the same ef- 

fect, λσ , on the stock price. This can also be accomplished 

in a reduced-form model, but the extant literature has fo- 

cused mostly on models in which the jumps and diffusive 

shocks to volatility can have different impact (see Eraker 

et al., 2003 and Bandi and Reno, 2016 for examples). 

3.2.1. Infinite horizon limit 

In order to avoid the effects of time lapsing, we con- 

sider the infinite horizon limit of our model. The equilib- 

rium stock price is given by 

d ln P t = r f d t + σt d B 

x 
t + λσ d σ 2 

t + λ0 (σ
2 
t ) d t (11)

where 

λ0 (σ
2 
t ) = −κθλσ − 1 

2 

σ 2 
t − l 0 

(
� 

(
β2 

(
u 1 −γ

))
− � 

(
β2 

(
u −γ

)))
(12) 

β2 (u 1 −γ ) = 

κ −
√ 

κ2 − σ 2 
v (γ 2 − γ ) 

σ 2 
v 

(13) 

β2 (u −γ ) = 

κ −
√ 

κ2 − σ 2 
v (γ 2 + γ ) 

σ 2 
v 

(14) 

λσ = β2 (u 1 −γ ) − β2 (u −γ ) < 0 (15) 

�(h ) = E(e hξt ) = 1 / (1 − μξ h ) . (16) 

A detailed derivation can be found in Appendix A.3 . 

The unconditional equity premium (in log return) in the 

economy defined as λ0 is 

λ0 = E λ0 (σ
2 
t ) = −κθλσ − 1 

2 

(
θ + 

l 0 μξ

κ

)
− l 0 

(
� 

(
β2 

(
u 1 −γ

))
− � 

(
β2 

(
u −γ

)))
. (17) 

There are two immediate properties of λσ that are im- 

portant. First, there is an upper limit on the amount of risk 

aversion, γ , that produces a well defined equilibrium (such 

that λσ is real). Second, when the equilibrium is well de- 

fined, λσ is negative for γ > 0 and exactly zero for γ = 0 . 

The sign follows from the fact that γ 2 + γ > γ 2 − γ . The 

fact that λσ is negative is important as it generates the 

leverage effect in the model. 

3.3. Risk neutral dynamics 

Proposition 1 . If equilibrium exists, the pricing kernel fol- 

lows 

dM t 

M t 
= −r f d t − γ σt d B 

x 
t − ησv σt d B 

v 
t + (e −ηξt − 1) d N t 

− l 0 (�(−η) − 1) dt. (18) 

Under the equivalent measure Q, the variance process follows 

d σ 2 
t = κQ (θQ − σ 2 

t ) d t + σv σt d B 

v ,Q + ξQ d N 

Q 
. (19) 
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The risk neutral parameters are 

κQ = κ + ησ 2 
v (20)

θQ = 

θκ

κQ 
(21)

l Q 
0 

= l 0 �(−η) (22)

μQ 
ξ

= μξ�(−η) (23)

η = −β2 

(
u −γ

)
< 0 . (24)

Under the risk neutral measure, the stock price follows 

dP t 

P t 
= r f d t + σt d B 

x,Q 
t + λσσv σt d B 

v ,Q 
t + (e λσ ξQ 

t − 1) d N 

Q 
t 

− l Q 
0 
(� 

Q (λσ ) − 1) dt. (25)

A few notes on the functional form of the transforma-

tion of the probability measure are in order. First, it fol-

lows immediately that η is negative for γ > 0. The market

price of the Brownian risk dB v t is ησ 2 
v σ

2 
t . As for the jump-

risk, the following reward-to-risk ratio illustrates the equi-

librium rewards for jump-risk 

ηJ ≡ E ξt − E 

Q ξt 

Std(ξt ) 
= 

E ξt 

Std(ξt ) 
(1 − ρ(−η)) . (26)

ηJ is also negative since ρ(−η) > 1 for η < 0. It is some-

what misleading to coin this measure a market price of

jump-risk. Jump-risks are characterized and priced not

only according to their mean and standard deviation, but

also their higher order moments. Nevertheless, as long as

the representative agent is risk averse, the model features

a negative variance risk premium from both diffusive and

jump-risk. We explore this in some depth below in con-

nection with variance futures (see Proposition 2 ). It is also

clear from expressions (22) and (23) that jump arrivals are

more frequent and jump sizes are larger under the risk

neutral relative to the objective probability measure. Our

model also contrasts reduced-form models in that there

is a tightly specified relationship between the risk adjust-

ments for jumps and diffusive risk premia. 

The stock price follows 

d ln P t = r f dt + (λ0 ( σ
2 
t ) − γ σ 2 

t ) d t + λσ d σ 2 
t + σt d B 

Q 
t 

(27)

under the risk neutral measure where dσ 2 
t is given by

Eq. (19) . 

Of essential interest is the τ period ahead conditional

variance of the log-return under Q measure, which we can

show to be a linear function of the spot variance σ 2 
t 

Var Q t ( ln P t+ τ ) = a (τ ) + b(τ ) σ 2 
t . (28)

Notice that VIX is defined as 

 IX t = Std 

Q 
t ( ln P t+21 ) = 

√ 

a (21) + b(21) σ 2 
t (29)

where we have defined a unit of time to be one business

day. 
3.4. Dynamic equilibrium effects 

The parameters λσ and η are important endogenous

parameters. Fig. 4 shows both parameters as functions of

risk aversion and speed of volatility mean reversion, κ . As

seen, both decrease in γ . It is clear from Eq. (11) that λσ

determines the endogenous impact of volatility shocks on

stock prices. Since λσ increases (in absolute value) in γ ,

the correlation between volatility shocks and stock prices

is negative (since λσ is negative) and increasing in abso-

lute value as γ increases. We illustrate this through scatter

plots of daily volatility changes and daily returns simulated

from the model using γ = 3 and γ = 8 in Fig. 5 . The cor-

relations are −0 . 23 and −0 . 60 , respectively. 

The equilibrium impact of shocks to volatility on stock

prices, as captured through λσ , is an important distin-

guishing feature of our model relative to standard reduced-

form models. For example, standard models such as He-

ston’s (1993) model for pricing options specify an exoge-

nous correlation between shocks to volatility and prices.

In Heston’s model this correlation is not tied to risk aver-

sion, and the correlation can be large or small indepen-

dent of volatility risk premium and equity premium. In

our model, risk premia for all assets increase monotoni-

cally as a function of risk aversion, through λσ . The ex-

pressions (20) –(23) restrict volatility risk premia for jump

and diffusive shocks to be functions of η. This contrasts the

reduced-form literature where there is no explicit link be-

tween jump and diffusive risk premia. 

Our model also leaves no room for volatility shocks

that are not priced. Reduced-form models, such as the

Stochastic-Volatility-with- Independent-Jumps (SVIJ) model

estimated in Eraker et al. (2003) , are not nested, since

jumps in volatility can occur without price impact. Impor-

tantly, equilibrium implies not only that volatility shocks

are priced, but that the relative impact of small (Brownian)

and large (jumps) shocks to volatility load with a factor

λσ on stock returns. Our model also rules out the condi-

tional CAPM as that model does not feature priced volatil-

ity shocks, see Eraker and Wang (2015) for a discussion of

how the conditional CAPM cannot be reconciled with dy-

namic present value computation. 

Fig. 6 illustrates some of the key pricing implications

through a comparison of the P and Q measures for the

stock price. The difference between the P and Q densi-

ties increases as γ is increasing. The plot also shows that

the two different values of γ give widely different Black–

Scholes implied volatilities for the underlying stock which

suggests that the model can generate a substantial volatil-

ity risk premium. This is of course key in explaining the

negative returns to VIX futures. 

3.5. Variance futures 

The nonlinearity introduced by the square root in

(29) necessitates numerical computation of futures prices.

While we can do this through a single one-dimensional

numerical integration (see Appendix A.4 ), for purposes of

illustration, we discuss the shape of a hypothetical fu-

tures contract written on VIX-squared. Theoretical variance

futures prices can be computed directly, and since the
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Fig. 4. The volatility feedback coefficient λσ and market price of volatility risk, η, for different values of risk aversion γ and volatility mean reverting 

speed κ . 

Fig. 5. Scatter plots of contemporaneous daily changes in volatility and stock returns. The data are simulated from the model using γ = 3 and 8, respec- 

tively. 
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Fig. 6. Top: objective ( P ) and risk neutral ( Q ) 1-month conditional tran- 

sition densities for the aggregate stock market for γ = 3 and 8. Bottom: 

implied Black–Scholes volatility. The “objective measure” (solid) implied 

Black–Scholes (BS) volatility is computed assuming zero-volatility and 

jump-risk premia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 The variance risk premium is a function of the difference in drift rate 

for σ 2 
t under the two measures. It is easy to see that the Q minus P drift, 

−ησ 2 
v σ

2 
t , is a positive number regardless the level of σ 2 

t . κ
Q < κ and 

θQ > θ suggest that the physical mean reversion rate is faster than the 

risk neutral and the physical mean reversion level is lower, which gives a 

negative risk premium for VIX long futures. 
3 The Jensen’s inequality term is E t (V IX t+ τ ) −

√ 

E t (V IX 2 t+ τ ) < 0 since the 

square root function is concave. 
squared VIX is a linear function of σ 2 
t , it inherits the prop-

erties of the risk premia embedded into the differences be-

tween the objective P and risk neutral Q probability mea-

sures. These hypothetical variance futures are priced 

F VIX 2 

t (τ ) = E 

Q 
t 

{
V IX 

2 
t+ τ

}
= E 

Q 
t 

{
a (21) + b(21) σ 2 

t+ τ
}

= a (21) + b(21) E 

Q 
t 

{
σ 2 

t+ τ
}
. (30)

In steady-state , the futures curve is 

F VIX 2 

t (τ ) = a (21) + b(21) E 

Q 
{
σ 2 

t+ τ | σ 2 
t = E (σ 2 

t ) 
}
. (31)

The following basic facts about VIX-squared futures are

easy to verify: 

Proposition 2 . If γ > 0 

1. The futures curve is upward sloping (contango) in steady-

state. 

2. Long positions in VIX-squared futures earn negative ex-

pected returns irrespective of the state of the economy. 

3. VIX-squared futures have negative market betas. 

It is worth commenting on some of these features.

There is a popular notion among practitioners and some

academics that if the futures curve is upward sloping, they

will capture a negative roll by purchasing the futures. This

is true only in relation to the physical drift rate of the un-

derlying VIX or σ 2 
t processes. For example, if the underly-

ing σ 2 
t process is in steady-state, ( σ 2 

t = E (σ 2 
t ) ), the neg-

ative roll is indicative of the actual expected returns be-

cause the expected terminal value of the VIX-squared is its

present value E t (V IX 
2 
t+ τ ) = V IX 2 t . A positive slope of the fu-

tures curve reflects only the risk premium in steady-state.

The larger the risk aversion in our model, the steeper the

slope, and the higher (lower) the risk premium earned by

short (long) positions. It is important to understand that

the expected return to a long position in VIX futures is de-

termined not by the shape of the futures curve per se, but

rather by the shape of the curve relative to the expected
value of the VIX at expiration of the futures. Accordingly,

in principle, if the futures curve were upward sloping but

the objective measure drift was greater than that implied

by the futures curve, the expected return to a long VIX

futures position would have been positive. This, however,

is never true in our model economy and investors earn a

strictly negative premium. 2 

3.6. A two-factor model 

Our basic one-factor benchmark model can be extended

to a two-factor model by allowing θ to follow a square

root, Cox–Ingersoll–Ross (CIR), stochastic process. We elab-

orate on the specification of this model in Appendix A.1 . 

3.7. VIX futures 

How do the actual VIX futures prices differ from the

hypothetical VIX-squared futures prices we analyze in the

preceding section? To answer this question, Fig. 7 shows

the various term structures under different assum ptions

about initial volatility states, σ t . We compare two things:

the actual, model-implied futures curve labeled Q (signify-

ing expectation under Q ) and the corresponding objective

measure expectation, labeled P . The difference between the

Q and the P expectations is due to the volatility risk pre-

mium. The right-hand graphs show the expected negative

returns for the holding period, E P t (V IX t+ τ ) /E Q t (V IX t+ τ ) − 1 ,

to a long futures position. 

Examining the plots to the left in Fig. 7 , we see the ob-

vious relations between spot volatility and the shape of the

futures curve: when spot volatility is high (low) the curve

is in backwardation (contango). When in steady-state the

futures curve is first convex and then concave. The con-

vexity created at the short end of the curve is due to a

Jensen’s inequality term created by the concavity of the

square root function. 3 The total expected holding period

returns are negative for all maturities and for all initial val-

ues of spot volatility. 

4. Empirical analysis 

We estimate the model using structural likelihood-

based estimation. The estimation approach is similar to

that of Eraker et al. (2003) (hereby EJP) in that we draw

the parameters of the model from the posterior distri-

bution � j ∼ p(� | Y T ) using MCMC sampling. The latent

conditional variances, σ 2 
t , the jump times, dN t , and jump

sizes, ξ t , are drawn from the respective conditional poste-

rior distributions in a manner similar to that of EJP. The

main difference is that our structural model leads to non-

standard posterior distributions. Since our structural model
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Fig. 7. Left: VIX futures curve and the objective measure expected payoff in the case of high, medium (steady-state), and low initial values of spot variance, 

σ 2 
t . Right: expected holding period return, E P t (V IX t+ τ ) / E Q t (V IX t+ τ ) − 1 , to a long futures position. 
gives rise to complicated nonlinear relationships between 

the “deep” parameters and the affine model coefficients 

such as λσ , it is not possible to draw any of the param- 

eters directly from conditional distributions. We therefore 

draw the entire parameter vector directly from the poste- 

rior using a Metropolis Hastings draw. 

4.1. MCMC estimation 

Bayesian inference for stochastic volatility models have 

become rather routine and a substantial literature is de- 

voted to developing algorithms for sampling from the pos- 

terior distributions of these models. This literature was ini- 

tiated by Jacquier et al. (1994) and has since seen numer- 

ous refinements see, for example, Kim et al. (1998) and ref- 

erences therein. 

The mechanics of our MCMC is straightforward. Let ξ t 

denote jump sizes, dN t a jump time indicator, and define 

� = { σt } T 0 , � = { ξt } T 0 , and N = { dN t } T 0 . 
We construct an algorithm that samples ( �, σ 0: T , ξ 0: T , 

N 0: T ) conditional upon the observed returns data R T := 

{ r t } T 0 only. By Monte Carlo sampling from the joint pos- 

terior p(�, �, �, N | R T ) , we also implicitly sample from 

the marginal posterior distributions (see Tanner and Wong, 

1987 ). 

Our method for carrying out MCMC sampling follows 

the general recipe of Eraker et al. (2003) , but differs in 
some important ways as the conjugacy offered by the 

reduced-form models in that paper is lost in our struc- 

tural model. For example, in EJP virtually all the model 

parameters have known conditional posterior distributions 

which follow from conditioning on the simulated values 

of volatilities, jump sizes, and times. This leads to con- 

ditionally Gaussian errors associated with the Brownian 

increments. For our model, the λ-parameters that deter- 

mine the equilibrium unconditional return and volatility- 

feedback effect, are nonlinear functions of risk aversion 

and the statistical parameters that determine the dynamics 

of volatility. For this reason, the entire parameter simula- 

tion step will have to be done using Metropolis-Hastings. 

4.2. Estimation results 

Table 6 reports structural estimates of the parame- 

ters in the model. All parameter estimates should be in- 

terpreted to be based on a unit of time being 1 day. 

This makes the time-series parameters directly compara- 

ble to estimates based on daily returns. Depending on 

whether the model includes jumps or not, κ is estimated 

to be 0.014 and 0.0091, respectively. These estimates im- 

ply daily autocorrelations of exp (−0 . 014) = 0 . 9861 and 

exp (−0 . 0091) = 0 . 991 . These numbers are broadly con- 

sistent with estimates reported elsewhere see Singleton 

(2006) for a review. 
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Table 6 

Model parameter estimates. 

The table reports parameter estimates of the 

underlying model for the S&P 500. The param- 

eter estimates are obtained using stock returns 

only. We report posterior means and standard 

deviations based on a joint MCMC simulation of 

latent volatility, jump times and sizes. 

SVVJ SV 

θ × 10 0 0 0 0.677 0.758 

(0.058) (0.069) 

κ 0.014 0.0091 

(0.002) (0.001) 

σ v × 10 0 0 0 10.788 9.716 

(0.357) (0.307) 

λ 0.002 

(0.0 0 0) 

μv × 10 0 0 0 0.390 

(0.096) 

γ 7.945 5.898 

(0.760) (0.677) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

VIX futures return moments: Data vs. model. 

This table compares average returns of VIX futures positions in data and 

model simulations. R 1 is the daily average arithmetic return, R 2 is the 

daily average logarithmic return, and R 3 is the average annual geometric 

return. Standard deviation, skewness, and kurtosis are from daily loga- 

rithmic returns. 

Maturity R 1 R 2 R 3 Std. Skewness Kurtosis 

Data 

1 Month −0.12 −0.20 −39.40 3.92 0.56 5.95 

2 Month −0.07 −0.11 −24.65 2.97 0.41 5.85 

3 Month −0.01 −0.04 −10.15 2.45 0.49 5.88 

4 Month −0.03 −0.05 −12.09 2.18 0.61 6.86 

5 Month −0.01 −0.03 −7.33 2.00 0.54 6.67 

SV 

1 Month −0.09 −0.19 −36.10 4.50 −0.13 3.29 

2 Month −0.07 −0.14 −28.15 3.56 −0.10 3.17 

3 Month −0.06 −0.11 −22.57 2.92 −0.08 3.20 

4 Month −0.05 −0.08 −18.41 2.44 −0.07 3.27 

5 Month −0.05 −0.07 −15.19 2.06 −0.06 3.36 

SVVJ 

1 Month −0.10 −0.19 −36.14 4.15 1.00 26.33 

2 Month −0.08 −0.13 −26.29 3.06 0.94 23.10 

3 Month −0.06 −0.09 −19.60 2.34 0.91 21.85 

4 Month −0.05 −0.07 −14.84 1.82 0.89 21.26 

5 Month −0.04 −0.05 −11.37 1.43 0.88 20.97 

Two factor 

1 Month −0.10 −0.22 −40.37 4.57 4.24 71.84 

2 Month −0.07 −0.14 −29.20 3.49 4.05 68.15 

3 Month −0.06 −0.10 −21.29 2.75 3.42 55.66 

4 Month −0.04 −0.07 −15.76 2.23 2.62 40.24 

5 Month −0.03 −0.05 −12.04 1.84 1.82 25.81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The most interesting parameter in Table 6 is the risk

aversion parameter, γ . We estimate this to be more

than ten posterior standard deviations away from zero

for the Stochastic-Volatility-with-Volatility-Jumps (SVVJ)

model. This contrasts conflicting evidence from the condi-

tional CAPM literature where the risk aversion parameters

are typically found to be statistically insignificant. 

Our model generates an endogenous negative correla-

tion between shocks to volatility and prices. Our estimates

imply a correlation of −0 . 613 for the diffusive shocks and

−1 for the jumps. The perfect negative correlation is an

equilibrium outcome because σ 2 
t is a priced risk factor.

As per the argument in Eraker and Wang (2015) , any

shock to the expected rate of return of the market will

lead to a negative equilibrium price response unless that

shock is perfectly offset by a simultaneous increase in fu-

ture expected cash flow from holding the asset. 4 Our es-

timates are broadly consistent with estimates reported in

the reduced-form literature. In this literature, using time-

series of returns only, the correlation is estimated to be

−0 . 62 ( Andersen et al., 2002 ), −0 . 48 ( Eraker et al., 2003 ),

and recently Aït-Sahalia et al. (2013) estimate the correla-

tion to be −0.77 using high frequency based realized vari-

ance (RV) along with a bias-correction to account for noise

in the RV estimator. Gualtieri and Sizova (2015) estimate

the parameter to be −0 . 61 using MCMC. A second strand

of the literature employs joint return/options data to re-

cover estimates of ρ and find −0 . 57 ( Bakshi et al., 1997 ),

−0 . 53 ( Pan, 2002 ), −0 . 58 ( Eraker, 2004 ). Finally, Bandi and

Reno (2016) estimate a non-parametric generalization of

the model in Eraker et al. (2003) where the diffusive cor-

relation is estimated to be −0.48 and the correlation be-

tween jumps in returns and spot variance is close to −1.

The sample correlation between changes in squared VIX
4 It is possible to set up an equilibrium model where the jumps to 

volatility are correlated with jumps in cash flows (our x t process). If so, 

the simultaneous occurrence of a positive volatility shock and a positive 

shock to expected cash flow will partially offset, so as to increase the cor- 

relation to a number above −1 . 

 

 

 

 

 

 

and S&P 500 returns is −0 . 72 using data from January

1990 to January 2016. 

To obtain estimates of the model’s expected return,

standard deviation, skewness, and kurtosis for VIX ETNs,

we simulate state variables from the underlying process

using the estimated parameters in Table 6 . We simulate

10,0 0 0 data sets of length T = 1816 , the length of our fu-

tures time-series and use these to compute theoretical fu-

tures prices. We then compute the returns to rolled futures

positions similarly to our procedure for the real data. We

compute sample moments from the simulated data and

compare these to the real data. 

Table 7 reports the results. We include the first three

estimators of the average returns from the data which we

previously reported in Table 1 for convenience. Note that

the higher order moments are of logarithmic daily returns.

Although slightly higher, the returns produced by the SVVJ

model are close to what we see in data for 1-month matu-

rity contracts. For longer maturities both models overstate

the size of the negative return premium. Both models fit

average returns surprisingly well. The models also do well

in fitting the higher order moments, with the exception of

the SVVJ model’s too high kurtosis. In general, the simu-

lated model returns have moments in the ballpark of that

seen in the real VIX futures data. We further test the null

hypothesis of zero difference between the model and the

data below. 

To carry out these significance tests, we use a model-

based bootstrap. We wish to avoid the use of test statistics

based on asymptotic normality because the higher order
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Fig. 8. Sampling distributions from the SV model vs. data: we simulate a panel of futures returns, compute the time-series moments and plot the cross 

section distributions of the moments under the SV model. The small-sample densities are estimated by kernel densities and compared to the sample 

moments in the data, shown in the vertical bars. 
moments are non-normally distributed in small samples. 

The evidence is presented in Figs. 8 and 9 , where kernel- 

smoothed densities of moments implied by the model and 

the corresponding data moments, are represented by ver- 

tical bars. The non-parametric density estimates should be 

interpreted as a model-based bootstrap of the sampling 

distribution for each respective moment. 
In examining Figs. 8 and 9 we see that the average re- 

turns for the stochastic-volatility (SV) model are insignif- 

icantly different between the real data and the model- 

generated data. For the standard deviations and higher or- 

der moments, the results are very different. The SV model 

basically fails to fit any moment higher than the first. The 

standard deviations are all significantly different between 
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Fig. 9. Sampling distributions from the SVVJ model vs. data: we simulate a panel of futures returns, compute the time-series moments, and plot the cross 

section distributions of the moments under the SVVJ model. The small-sample densities are estimated by kernel smoothing and compared to the sample 

moments in the data, shown in the vertical bars. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the model and the data. The skewness and kurtosis are so

far off that the vertical bars are outside of the empirical

support of the sampling distributions under the model. 

On the other hand, for the SVVJ model, the moments

are surprisingly well matched. With the exception of the

standard deviation for the 4- and 5-month maturity con-

tracts, the data and the model are insignificantly different.

From Table 7 we see that the SVVJ model generates sam-

ple kurtosis coefficients that range from 20 to 27 which
compares to coefficients that range from 5.95 to 6.86 in

the data. This may seem like a large difference, however,

Fig. 9 reveals that the sampling distribution under the

model has most of its mass below what we find in the

data. In fact, the medians of the small-sample distributions

for the kurtosis coefficients under the SVVJ model range

from 4.4 to 5. Thus, while it may seem from Tables 1 and

7 that the SVVJ model generates too high kurtosis, the dif-

ferences are in fact almost non-existent. 



88 B. Eraker, Y. Wu / Journal of Financial Economics 125 (2017) 72–98 

Fig. 10. Jump characterizations under the risk neutral measure. Left: the expected number of days for a jump to occur. Right: the expected size of a jump. 

 

Next, we examine how the improvement in goodness of 

fit for the SVVJ model relates to jump-risk. The estimated 

parameters imply, on average, that it takes 500 days and 

4 4 4 days for a jump to occur under physical and risk neu- 

tral measures, respectively. Once a jump does occur, the es- 

timated average jump sizes are 3 . 9 × 10 −5 and 4 . 4 × 10 −5 , 

correspondingly. Fig. 10 shows that the jump intensity and 

size both increase with risk aversion and are inversely re- 

lated to the mean reverting speed of the variance process. 

The variance risk premium and the long run average re- 

turns for VIX futures and ETNs are fundamentally driven by 

the difference between average level of volatility under the 

physical measure and the risk neutral measure. Therefore, 

to quantify the relative contribution of the diffusion and 

the jump, we compute how much that difference is due to 

each component. Let θ̄ and θ̄Q be the unconditional means 

of the variance process under the respective measures. We 

know 

θ̄ = θ + 

l 0 μξ

κ

θ̄Q = θQ + 

l Q 
0 
μQ 

ξ

κQ 

= 

κθ + l 0 μξρ
2 (−η) 

κ + ησ 2 
v 

. 

Let � be the difference between θ̄ and θ̄Q , then 

� = 

−ησ 2 
v θ

κ + ησ 2 
v 

+ 

l 0 μξ

(
κρ2 (−η) − κ − ησ 2 

v 
)

κ(κ + ησ 2 
v ) 

. 
The first term is due to the diffusion risk and the second 

term is due to the jump-risk. Using the estimated param- 

eter values, we can compute the fraction of � due to each 

source of risk. As we can see from Fig. 11 , the jump plays

a more and more important role as risk aversion increases 

and mean reverting speed slows down. 

4.3. Variance swaps 

In this section we consider our models’ abilities to ex- 

plain the returns to variance swaps. A variance swap is 

a zero-cost contract that pays the difference between an 

agreed upon price, called the swap rate ( VS ) and physi- 

cal, realized variance over some time period, say t , ..., T . 

The realized variance leg of the swap is simply the sum of 

squared daily log-returns, 

RV t,T = 

T ∑ 

s = t+1 

( ln R s ) 
2 
. (32) 

The variance swap rate is set such that investors are indif- 

ferent between the fixed and floating rate legs of the swap. 

This implies that 

V S t,T = E 

Q 
t (RV t,T ) . (33) 

Variance swaps trade in the over-the-counter (OTC) mar- 

ket. There is no public source for these OTC transactions. 

Fortunately, Eq. (33) suggests that any measure of Q vari- 

ance is an estimator for the variance swap rate. A num- 

ber of recent papers, including Dew-Becker, Giglio, Le, and 

Rodriguez (2015) (DGLR) and ( Johnson, 2015 ) use S&P 500 

option-implied variance. A variety of possible estimators of 
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Fig. 11. Left: difference of average variances under risk neutral and physical measure denoted as �. Right: portion of � due to jump. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q -variance, including the VIX method, can be applied to

estimate the variance swap rate. We apply the VIX method

with the exception that we ignore the squared drift term 

5

to make the computations consistent with the definition

(33) . 

Given a variance swap rate, we compute 1-month hold-

ing period returns 

R t ,t +22 = 

RV t ,t +22 + V S t+22 ,T 

V S t,T 
− 1 . (34)

Note that this formula shows that the payoff,

RV t ,t +22 + V S t+22 ,T , contains the realized variance com-

ponent, whereas the returns to VIX futures do not. It’s

possible therefore for the returns to the two asset classes

to differ markedly even if the theoretical prices are

strongly related. 

With this in mind, the existing literature on variance

swap returns suggests some puzzling features relative to

our evidence from the VIX futures markets. In particu-

lar, there are several papers that report empirical findings

which suggest that short maturity variance swaps exhibit

large negative returns, while long maturity swaps have re-

turns close to zero, or even positive. 

Table 8 presents various return estimates from the ex-

tant literature, along with our own estimates. We include
5 The formula for squared VIX estimates E Q t (RV t ,t +22 ) − E Q t (Ret t ,t +22 ) 
2 so 

we ignore the last term. 

 

 

these five different data sources in order to convey that

the returns are largely in the same ballpark. Three of the

data sets include the financial crisis (DGLR, Johnson, and

our own data). Those data sets produce returns that range

from −17% to −26% for the 1-month maturity and close to

zero returns for the longest horizon. The Bloomberg data

yield negative returns across the entire maturity spectrum,

but the Bloomberg sample period is particular as the data

start in October of 2008, the height of the financial crisis.

The data from Egloff et al. (2010) also produce negative re-

turns across all maturities, but this sample stops before the

financial crisis in 2007. 

Table 9 presents the moments of the variance swap re-

turns from our sample data alongside the model-implied

returns. At first glance it would appear that our one-factor

models do a poor job while the two-factor model matches

the data. In particular, the one-factor models are incapable

of matching the large negative return for the 1-month vari-

ance swaps. For example, the SVVJ model generates an av-

erage return of −9 . 34% which compares to −21 . 08% in the

data. At longer maturities the discrepancies are less signifi-

cant. These findings echo the results in Dew-Becker, Giglio,

Le, and Rodriguez (2015) who show that the Drechsler and

Yaron (2011) model cannot match the large negative re-

turns to 1-month claims while delivering too negative re-

turns for longer maturity contracts. 

To understand why our one-factor model fails to ex-

plain one market while almost perfectly explaining an-
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Table 8 

Returns to variance claims. 

The table reports average monthly returns and standard deviations for variance claims, including vari- 

ance swaps. We report average returns from Dew-Becker, Giglio, Le, and Rodriguez (2015) (DGLR), Johnson 

(2015) , Bloomberg (BB), Egloff et al. (2010) (ELW), as well as our own estimates. All numbers are in percent. 

Period Type 1M 2M 3M 6M 12M 

DGLR Mean 96–14 Option −25 .6 −5 .6 0 .8 0 .5 1 .8 

Std 69 .0 47 .8 34 .0 19 .7 17 .4 

Johnson Mean 96–14 Option −17 .3 −8 .7 −5 .1 −3 .6 −1 .1 

Std 150 85 .7 53 .3 29 .1 23 .0 

BB Mean 08–15 Option −33 .2 −23 .2 −19 .1 −12 .3 −6 .9 

Std 63 .3 52 .7 

ELW Mean 96–07 OTC – −21 .3 −13 .4 −7 .2 −4 .2 

Std – 35 .1 29 .2 19 .8 12 .9 

This paper Mean 96–15 Option −21 .1 −9 .7 −5 .9 −1 .4 0 .4 

Std 71 .8 63 .1 50 .9 38 .5 28 .1 

Table 9 

Variance swap returns: Data vs. model. 

This table compares average 1-month holding period re- 

turns of variance swaps in data and model simulations. All 

numbers are in percent. 

Maturity Data SV SVVJ Two factor 

1 Month −21.08 −3.41 -9.34 −20.28 

2 Month −9.68 −4.34 −6.75 −10.08 

3 Month −5.90 −4.27 −5.53 −6.80 

6 Month −1.43 −3.57 −3.70 −3.59 

12 Month −0.39 −2.52 −2.18 −1.93 

Table 10 

Variance swap returns from bid and ask Data. 

The table reports the returns to variance swaps computed from Option- 

Metrics using a modified version of the VIX formula. In Panel A we re- 

port returns to variance swaps based on bid, midpoints, and ask prices. 

In Panel B we report returns to price takers, defined as a trader who 

crosses the market to make trade, selling at the bid and buying at the 

ask price. 

Panel A: Returns based on bids, midpoints, and asks 

1M 2M 3M 6M 12M 

Bids 

Mean −14.27 −7.35 −4.87 −0.93 0.60 

Std 78.48 64.76 51.70 39.65 28.33 

Midpoints 

Mean −21.08 −9.68 −5.90 −1.43 0.39 

Std 71.80 63.15 50.92 38.52 28.12 

Asks 

Mean −26.77 −11.62 −6.75 −1.83 0.25 

Std 66.41 62.08 50.48 37.76 28.17 

Panel B: Returns to price takers 

Buyers 

Mean −26.77 −19.31 −15.68 −10.24 −7.87 

Std 66.41 55.79 45.64 35.00 26.25 

Sellers 

Mean 14.27 −1.55 −5.31 −8.45 −9.60 

Std 78.48 72.14 57.37 43.07 30.93 
other, closely related market, we note two facts. First, pay- 

offs to variance swaps depend on physical, realized vari- 

ance, whereas VIX futures do not. This means that if some- 

how the VIX itself is inflated by some constant across time 

relative to physical variance, this would show up in vari- 

ance swap returns but not necessarily in VIX futures re- 

turns. Second, our variance swap rates are in fact not mar- 

ket rates, but rather swap rates that are computed from 

the midpoint of the bid and asks from S&P 500 options 

prices. 

Next, we examine whether the use of midpoints be- 

tween the bids and the asks for the underlying options 

affects our returns computations. Fig. 12 plots the aver- 

age variance swap term structure in our sample data. The 

solid line represents the midpoint of the bids and the 

asks, which is what the CBOE uses to compute the VIX in- 

dex, while the dashed and dotted lines represent the term 

structures computed from bids and asks. There is a dra- 

matic difference between the rates computed from bids 

and asks. At the short end (1 month) the difference is 

17% (in variance units), while for a 12-month contract it 

is about 10%. 

Table 10 presents two pieces of evidence relating the 

bid-ask spreads in the underlying options to the variance 

swap returns. In Panel A we simply compute the variance 

swap rates from bids, midpoints, and asking prices. The re- 

sults show that indeed, the returns are higher when com- 

puted from bids rather than asking prices. In Panel B we 

examine the returns to a “price taker” who will initiate a 

trade at either bids or asks, hold the position for 1 month, 

and then liquidate the position at the other side of the 

market. We refer to a buyer as a trader who is purchas- 

ing the variance swap at the asking price and liquidating 
at the bid 1 month later, and vice versa. A seller realizes 

a positive return for a 1-month swap, and negative returns 

for any other maturity contract. This stems from the bid- 

ask being so large that by adding the spread to the cost of 

making the roundtrip trade, both long and short positions 

in long maturity contracts are unprofitable. 

5. Concluding remarks 

In this paper we show that the average returns earned 

on volatility and variance derivatives are very negative. We 

argue that the negative returns are consistent with equi- 

librium. Though the size of the negative return premium 

is not consistent with a traditional CAPM, which delivers 

a risk premium of −15% per year, we show that our dy- 

namic equilibrium models are capable of explaining the 

−30% per year average return to a 1-month (rolled) futures 

position. The SVVJ model, which includes volatility jumps, 

is our preferred one-factor model. We also present a two- 
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Fig. 12. Average term structure of variance swap rates computed from OptionMetrics using best bid, best ask, and the midpoint. All numbers are in 

annualized standard deviation units. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

factor calibrated model that produces returns to these as-

sets which are broadly consistent with what we observe in

the data, including the returns to variance swaps computed

from the midpoint of underlying bid and ask data for S&P

500 Index (SPX) options. 

It is important to understand the mechanisms that

cause these models to assign high volatility risk premia

and negative market betas to the VIX futures. The stock

market pays a single terminal cash flow such that its cur-

rent market value is the present value of the cash flow, es-

sentially discounted at an expected rate of return which

is proportional to the current volatility, σ t . The sensitivity

of the expected rate of return with respect to changes in

volatility is an increasing function of risk aversion, γ , in

our model. Thus, in equilibrium, positive (negative) shocks

to σ t give rise to negative (positive) stock price shocks.

The absolute magnitude of the correlation between the

negative return and volatility is an endogenous quantity

that increases (in absolute value) with γ . If we then think

about volatility as an asset class relative to the CAPM,

volatility, as measured by the VIX, is a negative beta as-

set. Since VIX futures prices are positively dependent on

current spot VIX, they too are negative beta assets. 

The overall size of the volatility risk premium in our

model depends on risk aversion, volatility persistence, and

the specification of volatility jumps. Large jumps lead to
discontinuities in stock prices reminiscent of financial cri-

sis. Jumps imply a higher short term volatility risk pre-

mium. Expected returns, accordingly, are a steeper func-

tion of maturity under the SVVJ model than the SV model.

The SV model comparably generates a higher volatility risk

premium by assigning a slightly lower speed of volatility

mean reversion. This leads to a somewhat higher nega-

tive return premium for long term futures contracts. It also

leads to more volatility in futures returns at longer matu-

rities (i.e., 5 months) in a manner that is consistent with

market data. 
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Appendix A 

A1. A two-factor volatility model 

As demonstrated in Section 4.2 , the SVVJ model cap-

tures all but one aspect of the observed futures returns–
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it significantly underestimates the variability of longer 

term contracts. Since the SVVJ model is a single factor 

affine volatility model, it cannot generate long run mem- 

ory behavior in conditional volatility, as empirically docu- 

mented by Bollerslev and Mikkelsen (1996) among others. 

Bates (20 0 0) and Chernov et al. (2003) propose two-factor 

nested conditional variance specification in a no-arbitrage, 

reduced-form model. We propose a similar model, 

dx t 

x t 
= μd t + σt d B 

x 
t (35) 

dσ 2 
t = κ(θt − σ 2 

t ) dt + σv σt dB 

v 
t + ξt dN t (36) 

dθt = κθ (θ − θt ) dt + σθ

√ 

θt dB 

θ
t (37) 

ξt ∼ Exp (μξ ) (38) 

N t ∼ Poisson (l 0 t) (39) 

or r (d B 

i 
t , d B 

j 
t ) = 0 , i, j ∈ { x, v , θ} and i � = j. (40) 

In this specification the conditional variance, σ 2 
t , mean- 

reverts to a stochastic mean, θ t , which again follows a 

square root process. If we assume that the persistence in 

θ t is stronger than for σ 2 
t (i.e., κθ is “small”), then θ t will 

generate low frequency movements in volatilities while σ t 

accounts for higher frequency movements. 

The equilibrium stock price can now be seen to be 

given by 

d ln P t = r f,t d t + λ0 (σ
2 
t , θt ) d t + λσ d σ 2 

t + λθ d θt + σt d B 

x 
t , 

(41) 

where λ j , j = { σ, θ} are equilibrium coefficients which 

again are nonlinear functions of the parameters. The 

squared VIX index is again a linear function of the state- 

variables 

 IX 

2 
t = Var Q t ( ln P t+21 ) = a + bσ 2 

t + cθt , (42) 

where we can solve for constants a, b , and c (see 

Appendix A.4 ). Since V IX 2 t is a function of two processes 

with different autocorrelation functions, the autocorrela- 

tion for the V IX 2 t itself is a mixture, and thus displays long- 

run memory-like behavior. 

It’s difficult to take our two-factor volatility model and 

estimate it using return data alone. The purpose of our ex- 

ercise here is to demonstrate that the two-factor model 

is capable of matching the moments of the futures re- 

turns data. In Fig. 13 we show the sampling distribu- 

tions for the VIX futures data under the model, using cal- 

ibrated parameters. The parameters are κ = 0 . 0198 , σv = 

0 . 0 019 , θ × 10 0 0 0 = 0 . 2167 , γ = 5 . 4981 , l 0 = 0 . 0018 , μv ×
10 0 0 0 = 1 . 6933 , κθ = 0 . 0 068 , and σθ × 10 0 0 0 = 5 . 22 . The

data moments are all well inside the tails of the sampling 

distributions suggesting that our two-factor volatility spec- 

ification provides a plausible description of the true data 

generating process. Note that the standard deviation of the 

longer maturity contracts is matched almost exactly. 
A2. Solving the stochastic-differential-equation (SDE) system 

Define the state variable X t in this economy as 

( ln x t , σ 2 
t , θt ) and assume X t follows an affine process 

equivalent to 

dX t = (K 0 + K 1 X t ) dt + σ (X t ) dB t + 

⎛ 

⎝ 

0 

ξt dN t 

0 

⎞ 

⎠ (43) 

K 0 = 

(
μ 0 κθθ

)′ 
(44) 

K 1 = 

⎛ 

⎜ ⎝ 

0 −1 

2 

0 

0 −κ κ

0 0 −κθ

⎞ 

⎟ ⎠ 

(45) 

σ (X t ) σ (X t ) 
′ = H 0 + �3 

i =1 H i · X t (i ) (46) 

H 0 = 0 3 ×1 (47) 

H 2 = 

⎛ 

⎝ 

1 0 0 

0 σ 2 
v 0 

0 0 0 

⎞ 

⎠ (48) 

H 3 = 

( 

0 0 0 

0 0 0 

0 0 σ 2 
θ

) 

(49) 

Therefore, E t e 
u ′ X t = e α(u,t,T )+ β ′ (u,t,T ) X t , where α and β

solve a system of ordinary differential equations (see Duffie 

et al., 20 0 0 ), given by 

∂α

∂t 
= −K 

′ 
0 β − l 0 (�(β2 ) − 1) (50) 

∂β

∂t 
= −K 

′ 
1 β − 1 

2 

β ′ Hβ (51) 

α(u, T , T ) = 0 (52) 

β(u, T , T ) = u (53) 

�(β2 ) = E e β2 ξt = 

1 

1 − β2 μξ
. (54) 

The analytical solutions for β1 ( u, t, T ) and β2 ( u, t, T ) can

be obtained as 

β1 (u, t, T ) = u (1) , (55) 

β2 (u, t, T ) = a 2 (u ) + (a 2 (u ) − a 1 (u )) 
C(t, u ) 

1 − C(t, u ) 
, (56) 

while, 

a 2 (u ) = 

κ −
√ 

κ2 − σ 2 
v (u (1) 2 − u (1)) 

σ 2 
v 

, (57) 

a 1 (u ) = 

κ + 

√ 

κ2 − σ 2 
v (u (1) 2 − u (1)) 

σ 2 
v 

, (58) 
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Fig. 13. Sampling distributions from the two-factor volatility model vs. data: We simulate a panel of futures returns, compute the time-series moments 

and plot the cross section distributions of the moments under the two-factor model. The small-sample densities are estimated by kernel densities and 

compared to the sample moments in the data, shown in the vertical bars. 

 

 

C  

 

 

 

 

 

 

 

 

 

 

 

 

 

c 1 (u ) = 

u (2) − a 2 (u ) 

u (2) − a 1 (u ) 
, (59)

c 2 (u ) = 

(a 2 (u ) − a 1 (u )) σ 2 
v 

2 

, (60)

(t, u ) = c 1 e 
c 2 (u )(T −t) . (61)

We solve β3 ( u, t, T ) and α( u, t, T ) numerically. However,

when T → ∞ , the analytical solution for β3 ( u ) is 

β3 (u ) = 

κθ −
√ 

κ2 
θ

− 2 κa 2 (u ) σ 2 
θ

σ 2 
θ

. (62)

In the case of T → ∞ , solution for β1 ( u ) is the same

and β2 (u ) = a 2 (u ) . 

A3. Equilibrium stock returns 

Let P t denote the price of the risky asset at date t and

s be the number of shares the representative agent holds.
The equilibrium asset price can be derived by solving the

optimal portfolio problem 

max 
s 

E t u 

(
s ̃  x T − ( s − 1 ) P t e 

r f (T −t) 
)
. (63)

From the first order condition and the fixed supply s ∗ =
1 of the risky asset we find that its price is 

P t = 

E t u 

′ ( ̃  x T ) ̃  x T e 
−r f T 

E t u 

′ ( ̃  x T ) e 
−r f t 

= 

E t ̃  x 
1 −γ
T 

e −r f T 

E t ̃  x 
−γ
T 

e −r f t 

= exp { α(u 1 −γ , t, T ) − α(u −γ , t, T ) + (β ′ (u 1 −γ , t, T ) 

− β ′ (u −γ , t, T )) X t − r f (T − t) } (64)

u 1 −γ = 

(
1 − γ 0 0 

)′ 
, u −γ = 

(
−γ 0 0 

)′ 
. (65)

If we take the limit T → ∞ , then βs do not depend on

t . Define 

λσ = β2 (u 1 −γ ) − β2 (u −γ ) , (66)

λθ = β3 (u 1 −γ ) − β3 (u −γ ) . (67)
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Then 

ln P t = α(u 1 −γ , t, T ) − α(u −γ , t, T ) − r f (T − t) 

+ lnx t + λσσ 2 
t + λθθt . (68) 

The dynamics of the stock price are 

d ln P t = 

(
∂α(u 1 −γ , t, T ) 

∂t 
− ∂α(u −γ , t, T ) 

∂t 

)
d t + r f d t 

+ d ln x t + λσ dσ 2 
t + λθ dθt (69) 

= r f d t −
(
κθθλθ + l 0 

(
� 

(
β2 

(
u 1 −γ

))
− � 

(
β2 

(
u −γ

))))
d t 

− 1 

2 

σ 2 
t d t + σt d B 

x 
t + λσ d σ 2 

t + λθ d θt . (70) 

Note that μ cancels out in the expression. To further write 

the dynamics of lnP t in terms of the underlying shocks, we 

plug in the dynamics of the state-variables to the above 

equation. A lot of items cancel out and we have 

d ln P t = r f d t + σt d B 

x 
t + λσσv σt d B 

v 
t + λθσθ

√ 

θt dB 

θ
t 

− ( 
1 

2 

+ κλσ ) σ 2 
t dt + (κλσ − κθλθ ) θt dt 

−l 0 
(
� 

(
β2 

(
u 1 −γ

))
− � 

(
β2 

(
u −γ

)))
d t + λσ ξt d N t 

(71) 

A4. VIX futures prices 

By definition we have 

 IX 

2 
t = V ar Q t ( ln P t+21 ) . (72) 

The conditional cumulant generating function for ln P t+21 is 

given by 

�(u ) = ln E 

Q 
t e 

ulnP t+21 

= ln E 

Q 
t e 

uλ′ 
X X t+21 

= α(uλX , t, t + 21) + β ′ (uλX , t, t + 21) X t (73) 

λX := (1 , λσ , λθ ) ′ . (74) 

Therefore, using the property of the cumulant generat- 

ing function, we see V IX 2 t = V ar Q t ( ln P t+21 ) = a + bσ 2 
t + cθt ,

while a, b , and c are second derivatives of α(ελX , t, t + 21) , 

β2 (ελX , t, t + 21) , and β3 (ελX , t, t + 21) evaluated at ε = 

0 . We numerically compute a, b , and c since the analytical 

solution is complicated. However, in the case of our one- 

factor model, we are able to achieve an analytical solution 

for b as follows: 

b(τ, γ ) = 

1 

κγ
+ 

(1 + 2 γ ) 2 σ 2 
v 

4(κγ ) 3 

+ 

e −κγ τ σ 2 
v 

κ2 
γ

λσ

(
1 − e −κγ τ

)(
1 + 2 γ + λσκγ

)
−e −κγ τ σ 2 

v 
κ2 

γ

(
(1 + 2 γ ) 2 

(
τ

2 

+ 

e −κγ τ

4 κγ

)

+ κγ (1 + 2 γ ) τλσ + 

κγ

σ 2 
v 

)
(75) 

κγ = 

√ 

κ2 − σ 2 
v (γ 2 + γ ) (76) 
The solution of b under P measure is a special case of let- 

ting γ = 0 and the VIX associated b is a special case of 

letting τ = 21 in the above expression. 

We adopt the analytical formula for VIX futures up to 

an integral by Zhu and Lian (2012) , and price VIX futures 

by numerical integration: 

F V IX t (t + τ ) 

= E 

Q 
t 

√ 

V IX 

2 
t+ τ

= 

1 

2 

√ 

π

∫ ∞ 

0 

1 − E 

Q 
t e 

−sV IX 2 t+ τ

s 3 / 2 
ds 

= 

1 

2 

√ 

π

∫ ∞ 

0 

1 − e −as 
E 

Q 
t e 

u 1 (s ) ′ X t+ τ

s 3 / 2 
ds 

= 

1 

2 

√ 

π

∫ ∞ 

0 

1 − e −as e α(u 1 (s ) ,t ,t + τ )+ β ′ (u 1 (s ) ,t ,t + τ ) X t 

s 3 / 2 
ds 

= 

1 

2 

√ 

π

∫ ∞ 

−∞ 

e −0 . 5 s 
(
1 −e −ae s e α(u 2 (s ) ,t ,t + τ )+ β ′ (u 2 (s ) ,t ,t + τ ) X t 

)
ds,

(77) 

where 

u 1 (s ) = (0 , −bs, −cs ) ′ (78) 

u 2 (s ) = (0 , −be s , −ce s ) ′ . (79) 

The second equality is a mathematical result using Fubini’s 

theorem and the last equality follows by a change of vari- 

able to make the integrand bell shaped for easier numeri- 

cal computation. 

A5. MCMC details 

Our MCMC estimator requires a Gibbs scheme where 

we cycle through draws from the conditional distributions 

for σ 2 
t , jump-times, N t , jump sizes, ξ t , and parameters, �. 

The respective conditional distributions are known to be 

proportional to the joint posterior, which is given by 

p(�, �, N , � | R T ) 

∝ 

T ∏ 

t=1 

p(r t , σ
2 
t | ξt , σ

2 
t−1 , �) p(ξt | �) p(ξt ) l(σt ) p(�) . 

(80) 

We can now sample elements of �, �, N , and � in a 

sequence of Metropolis draws. However, rather than sam- 

pling directly from this posterior we prefer to first trans- 

form the volatility processes through a log transform. De- 

fine v t = ln σ 2 
t and ηt = ln (σ 2 

t + ξt ) − ln σ 2 
t . The joint dy- 

namics of r t and v t can be found through Ito’s lemma. The 

Euler discretization is 

r t = λ0 dt + λσ ( exp (v t ) − exp (−v t−1 ) ) + exp (v t−1 ) ε
x 
t 

(81) 

v t = v t−1 + 

(
κθv − 1 

2 

σ 2 
v 

)
exp (−v t−1 ) − κ) − ηt dN t 

+ exp (−v t−1 ) σv ε
σ
t . (82) 

A bivariate Gaussian specification for εx 
t and εσ

t now im- 

plies the conditional density p(r t , v t | v t−1 , ηt , dN t ) . The
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conditional posterior for η is 

p(ηt | �, N , R T , �) 

∝ p(r t , v t | v t−1 , ηt , dN t ) p(ηt | σ 2 
t ) I η> 0 , (83)

where 

p(ηt | σ 2 
t , �) = exp 

(
−( exp (η) − 1 ) 

σ 2 
t 

μv 
+ ηt 

)
σ 2 

t 

μv 
. (84)

We draw η by proposing from a normal with

mean μQ 
η = (μ2 ω 

2 
1 

+ μ1 ω 

2 
2 
) / (ω 

2 
1 

+ ω 

2 
2 
) , where μ1 =

ln (μv /σ 2 
t ) , μ2 = v t − v t−1 − (κθv − 1 

2 σ
2 
v ) e 

−v t−1 − κ) ,

ω 2 = σv exp (− 1 
2 v t−1 ) , and ω 1 is a constant. This proposal

density approximates the target density through a normal

approximation of p ( ηt | .) in (83) . 

The posterior distribution for the jump-indicator, dN , is

available in closed form. Define 

G (i ) = φ(v t | v t−1 , ηt , dN t = i, �) p(ηt | σ 2 
t , �) p(dN t = i ) ,

(85)

where φ is a Gaussian density, then 

p(dN t = 1) = 

G (1) 

G (1) + G (0) 
(86)

is the binomial probability of dN t = 1 . 

Finally, our algorithm requires simulating from 

p(v t | v t−1 , v t+1 , ηt , dN t , �) 

∝ p(r t , v t | v t−1 , ηt , dN t ) p(r t+1 , v t+1 | v t , ηt+1 , dN t+1 ) 

(87)

a non-standard density which once again requires a

Metropolis step. To facilitate a Metropolis draw from this

density, we propose a candidate value v ∗ from a condition-

ally Gaussian y ∗ ∼ N ( M t , S t ) where the conditional mean

is 1 
2 (v t−1 + v t+1 ) which was shown to be the � t → 0 limit

in a diffusive setting in Eraker (2001) . The variance of the

proposal density is S t = σ 2 
v e 

−v t−1 s where s is drawn from

s = { s l , s h } and is a Bernoulli random number such that the

variance can be scaled to be large. 

Fig. 14 shows the behavior of the MCMC sampler for

40,0 0 0 posterior draws of γ using different starting values.

The figure suggests the ideal behavior of MCMC chains: as

the sample size increases the respective posterior draws

appear to settle in a subset of the parameter space, sug-

gesting that they are drawn from the same stationary dis-

tribution. 

A6. Proof of Proposition 1 

Proof . From Appendix A.3 , we know 

P t = 

E t 

(
X 

1 −γ
T 

e −r f T 
)

E t 

(
X 

−γ
T 

e −r f t 
)

= E t 

E t+ τ
(
X 

1 −γ
T 

e −r f T 
)

E t 

(
X 

−γ
T 

e −r f t 
)

= E t 

( 

E t+ τ
(
X 

−γ
T 

e −r f ( t+ τ ) 
)

E t 

(
X 

−γ
T 

e −r f t 
) E t+ τ

(
X 

1 −γ
T 

e −r f T 
)

E t+ τ
(
X 

−γ
T 

e −r f ( t+ τ ) 
)
) 
= E t 

( 

E t+ τ
(
X 

−γ
T 

e −r f ( t+ τ ) 
)

E t 

(
X 

−γ
T 

e −r f t 
) P t+ τ

) 

= E t 

(
M t+ τ

M t 
P t+ τ

)
. (88)

Therefore, the stochastic discount factor is 

M t = E t x 
−γ
T 

e −r f t = e α(u −γ ,t,T )+ β ′ (u −γ ,t,T ) X t −r f t . (89)

Following a similar approach for the dynamics of the

stock price in Appendix A.3 , we derive the dynamics of the

pricing kernel as 

d ln M t = −r f d t −
(

1 

2 

γ 2 + 

1 

2 

σ 2 
v η

2 
2 

)
σ 2 

t d t 

− γ σt dB 

x 
t − ησv σt dB 

v 
t 

− l 0 ( �(−η) − 1 ) d t − ηξt d N t (90)

η := −β2 

(
u −γ

)
. (91)

It follows that 

dM 

−
t 

M 

−
t 

= −r f dt − l 0 ( � ( −η) − 1 ) dt − γ σt dB 

x 
t − ησv σt dB 

v 
t 

(92)

and from the definition of d ln M 

−
t , we know ln M t −

ln M 

−
t = −ηξt dN t , therefore 

M t − M 

−
t 

M 

−
t 

= e −ηξt dN t − 1 = 

(
e −ηξt − 1 

)
dN t . (93)

Adding the above two equations together, we get 

dM t 

M 

−
t 

= −r f dt − l 0 ( � ( −η) − 1 ) dt + 

(
e −ηξt − 1 

)
dN t 

− γ σt dB 

x 
t − ησv σt dB 

v 
t . (94)

Using Theorem 2.1 in Eraker and Shaliastovich (2008) ,

the dynamics of diffusions and state-variables under the

equivalent measure Q are 

dB 

x 
t = d B 

x,Q 
t − γ σt d t (95)

dB 

v 
t = d B 

v ,Q 
t − ησv σt d t (96)

dX t = (K 

Q 
0 

+ K 

Q 
1 

X t ) dt + σ (X t ) dB 

Q 
t + ξQ 

t dN 

Q 
t (97)

K 

Q 
0 

= K 0 (98)

K 

Q 
1 

= 

( 

0 −1 

2 

− γ

0 −κ − ησ 2 
v 

) 

(99)

l Q 
0 

= l 0 � ( −η) (100)

μQ 
ξ

= μξ� ( −η) . (101)

The variance dynamics under the Q measure as in Eq.

(19) can be easily derived from Eq. (97) . Under the Q
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Fig. 14. Posterior MCMC draws of the risk aversion parameter γ using different starting values. 

 

measure, state variables are still affine and thus the mo- 

ment generating function of future state vector can be 

derived similarly as under the objective measure as in 

Appendix A.2 . 

By plugging in the expressions for the diffusions under 

Q in Eqs. (95) and (96) to Eq. (71) , we recover the dynam- 

ics of the stock price under Q as 

d ln P t = r f d t + σt d B 

x,Q 
t + λσσv σt d B 

v ,Q 
t 

+ 

(
−1 

2 

− 1 

2 

λ2 
σ σ 2 

v 

)
σ 2 

t dt 

−l 0 
(
� 

(
β2 

(
u 1 −γ

))
− � 

(
β2 

(
u −γ

)))
d t + λσ ξQ 

t d N 

Q 
t . 

(102) 

Realize 

l 0 
(
� 

(
β2 

(
u 1 −γ

))
− � 

(
β2 

(
u −γ

)))
= l 0 � 

(
β2 

(
u −γ

))( 

� 

(
β2 

(
u 1 −γ

))
� 

(
β2 

(
u −γ

)) − 1 

) 

= l Q 
0 

( 

1 

1 −β2 (u 1 −γ ) μξ

1 −β2 (u −γ ) μξ

− 1 

) 

= l Q 
0 

( 

1 

1 − β2 (u 1 −γ ) μξ −β2 (u −γ ) μξ

1 −β2 (u −γ ) μξ

− 1 

) 

= l Q 
0 

( 

1 

1 − λσ μξ

1 −β2 (u −γ ) μξ

− 1 

) 
= l Q 
0 

( 

1 

1 − λσμQ 
ξ

− 1 

) 

= l Q 
0 

(
� 

Q ( λσ ) − 1 

)
. (103) 

By substituting back into Eq. (102) using a similar approach 

as we did to get the dynamics of dM t 
M t 

from d ln M t , we get 

dP t 

P t 
= r f d t + σt d B 

x,Q 
t + λσσv σt d B 

v ,Q 
t + (e λσ ξQ 

t − 1) d N 

Q 
t 

− l Q 
0 

(
� 

Q ( λσ ) − 1 

)
dt. (104) 

The stock has expected return equal to risk free rate under 

measure Q . �

A7. Proof of Proposition 2 

Proof . For the first claim : Note that the unconditional mean 

of σ 2 
t is E (σ 2 

t ) = θ + l 0 μξ /κ . The slope of the futures 

curve is determined by the last conditional expectation 

term in (31) , as both a (21) and b (21) are positive. This con-

ditional expectation is 

F (τ ) = σ 2 
t e 

−κQ τ + (θQ + 

μQ 
ξ

l Q 
0 

κQ 
)(1 − e −κQ τ ) , (105) 

whose slope is given by 

dF (τ ) 

dτ
= −κQ σ 2 

t e 
−κQ τ + (θQ + 

μQ 
ξ

l Q 
0 

κQ 
) κQ e −κQ τ . (106) 



B. Eraker, Y. Wu / Journal of Financial Economics 125 (2017) 72–98 97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substituting in the steady-state σ 2 
t = θ + 

μξ l 0 
κ we find that

the sign of dF (τ ) 
dτ

is determined by 

−θ − μξ l 0 

κ
+ θQ + 

μQ 
ξ

l Q 
0 

κQ 
≥ 0 (107)

where the equality holds if and only if γ = 0 . 

For the second claim , we need to prove 

E 

Q (σ 2 
t+ τ | σ 2 

t ) > E 

P (σ 2 
t+ τ | σ 2 

t ) (108)

for all σ 2 
t ∈ R 

+ . Define θ̄ and θ̄Q to be the unconditional

means of the process under the respective measures. The

inequality in (108) can be written 

σ 2 
t e 

−κQ τ + θ̄Q (1 − e −κQ τ ) −
(
σ 2 

t e 
−κτ + θ̄ (1 − e −κτ ) 

)
> 0 . 

(109)

Since κQ < κ , it follows that σ 2 
t (e −κQ τ − e −κτ ) > 0 for any

σ 2 
t . It remains to show 

θ̄Q (1 − e −κQ τ ) − θ̄ (1 − e −κτ ) > 0 (110)

which is equivalent to 

θ̄Q − θ̄ > θ̄Q e −κQ τ − θ̄e −κτ . (111)

Define f (τ ) = θ̄Q e −κQ τ − θ̄e −κτ , then 

f ′ (τ ) = −κQ θ̄Q e −κQ τ + κθ̄e −κτ . (112)

Recall 

θ̄Q = θQ + 

l Q 
0 
μQ 

ξ

κQ 

= 

θκ

κQ 
+ 

l Q 
0 
μQ 

ξ

κQ 
(113)

θ̄ = θ + 

l 0 μξ

κ
. (114)

Substituting back to Eq. (112) , we get 

f ′ (τ ) = −
(
κθ + l Q 

0 
μQ 

ξ

)
e −κQ τ + 

(
κθ + l 0 μξ

)
e −κτ

= κθ(e −κτ − e −κQ τ ) + 

(
l 0 μξ e −κτ − l Q 

0 
μQ 

ξ
e −κQ τ

)
. 

(115)

Since κQ < κ , l Q 
0 

> l 0 and μQ 
ξ

> μξ , it is easy to see that

f ′ ( τ ) < 0, therefore f (0) > f ( τ ) for all τ , which is exactly

the inequality (111) we need to prove. 

For the third claim , note that the price can be written 

d ln P t = −
(
μ + κθλσ + l 0 

(
� 

(
β2 

(
u 1 −γ

))
− � 

(
β2 

(
u −γ

))))
d t + r f d t + d ln x t + λσ dσ 2 

t 

(116)

while the VIX-squared futures is 

dF VIX 2 

t (τ ) = b(21) dF (τ ) 

= b(21) e −κQ τ dσ 2 
t + b(21) e −κQ τ κQ σ 2 

t dt. (117)

The instantaneous covariance of the VIX-squared with the

market is therefore 

E t 

{ 

dF VIX 2 

t (τ ) d ln P t 

} 

= λσ b(21) e −κQ τ E t ((d σ 2 
t ) 

2 ) d t (118)
whose sign is determined by the sign of λσ . �
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