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o-arbitrage models are extremely flexible modelling tools but often lack economic motivation. This paper

describes an equilibrium consumption-based CAPM framework based on Epstein-Zin preferences, which
produces analytic pricing formulas for stocks and bonds under the assumption that macro growth rates fol-
low affine processes. This allows the construction of equilibrium pricing formulas while maintaining the same
flexibility of state dynamics as in no-arbitrage models. In demonstrating the approach, the paper presents a
model that incorporates inflation such that asset prices are nominal. The model takes advantage of the possi-
bility of non-Gaussian shocks and model macroeconomic uncertainty as a jump-diffusion process. This leads to
endogenous stock market crashes as stock prices drop to reflect a higher expected rate of return in response to
sudden increases in risk. The nominal yield curve in this model has a positive slope if expected inflation growth
negatively impacts real growth. This model also produces asset prices that are consistent with observed data,
including a substantial equity premium at moderate levels of risk aversion.
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1. Introduction

Traditional models of financial market equilibrium,
such as the Sharpe-Linter-Mossin CAPM and Lucas’
consumption C-CAPM, are well known to fail in
explaining essential stylized facts of asset market
data. The C-CAPM cannot generate equity returns
that on average exceed the risk-free rate unless risk
aversion is unreasonably high (the equity premium
puzzle), and even with a high-risk aversion, the
model produces a risk-free rate that far exceeds those
observed historically (risk-free rate puzzle). Clearly,
the simple constant relative risk aversion (CRRA)
model offers a too-simplistic notion of equilibrium to
generate realistic pricing implications.

Although equilibrium models based on time-
separable preferences have been uniformly rejected,
the recent literature based on Long-Run-Risk has
shown promise in explaining a number of asset-
pricing puzzles. Noticeably, Bansal and Yaron (2004)
derive a model in which one or two persistent long-
run factors impact the first and second conditional
moments of consumption growth. They show that a
recursive utility function, rather than time-separable
CRRA preferences, leads to high-equity premiums.
The Epstein-Zin preference structure, by separating
elasticity of substitution from risk aversion, allows for
equilibria in which high-equity returns coincide with
low-risk free rates.

The primary goal of this paper is to describe a
convenient framework for pricing assets using a gen-
eral equilibrium, Epstein-Zin based model economy.

This framework is an extension of the Bansal and
Yaron model economy in which all shocks in the econ-
omy are assumed to be normally distributed. Rather,
equilibrium prices in this paper are derived under
the assumption that exogenous state variables follow
affine processes observed at discrete time intervals.
The affine framework offers a very wide range of pos-
sible statistical behavior for the exogenous shocks in
the model. Specifically, the affine framework allows
for large shocks (modelled by Poisson-jump pro-
cesses) as well as stochastic volatility. Another distinct
advantage of affine processes is that they may be con-
strained to be positive. This is useful for modelling
quantities that inherently should be positive, such as
volatility. This contrasts with conditionally normally
distributed volatility processes currently being used
in the long-run-risk literature.

This paper presents a new model designed to
illustrate some of the asset pricing implications of
the affine equilibrium framework. This model is a
generalization of the model in Bansal and Yaron
(2004) to an economy in which the volatility of the
consumption growth rate exhibits large exogenous
shocks (jumps) and where inflation contains a ran-
dom component. Because the price/dividend ratio in
this model is an exponential-linear function of the
volatility, a large positive shock in volatility leads to a
large negative shock in the stock price. This is akin to
an endogenously generated market crash. The second
effect of volatility jumps is that the risk premia associ-
ated with volatility sensitive assets, such as stocks, are
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substantially larger. In our example model, the pres-
ence of volatility jumps increases the equity premium
by as much as one percent per annum relative to a
model that has no volatility jumps.

The effects of introducing inflation are as follows:
If inflation is neutral, shocks to expected inflation
and inflation volatility are not priced, and the nom-
inal equity premium and yield curve equal their
real counterparts plus inflation. When expected infla-
tion impacts the real economy, it acts as an addi-
tional long-run risk variable. This positively affects
the equity premium. As a consequence, even smaller
risk-aversion values are needed to generate a pre-
mium consistent with that observed in the United
States. Another interesting implication is that nonneu-
tral inflation implies a proportionally higher premium
for long maturity bonds. This has the consequence
that the model produces a positively sloping nomi-
nal yield curve. The positively sloping yield curve in
our model obtains even though the risk aversion and
elasticity of intertemporal substitution parameters are
small.

As equilibrium models have proved too restrictive,
models based on no arbitrage have largely dominated
the asset pricing literature. This is true for stock mar-
ket valuation, where, for example, the widely used
Fama-French three-factor model can be interpreted
in the framework of the no-arbitrage theory of Ross
(1976), in yield curve and credit risk modelling, where
models by Vasicek (1977), Duffie and Kan (1996), and
Dai and Singleton (2000) are typical examples, as well
as derivatives pricing (i.e., Heston 1993, Bates 1996,
Duffie et al. 2000). On one hand, no-arbitrage the-
ory provides a convenient tool for modelling because
it imposes almost no restrictions on the statistical
behavior of asset prices. On the other hand, no arbi-
trage models offer limited insight into the behavior of
financial market participants. For example, although
empirical studies of no-arbitrage pricing models typi-
cally produce estimates of market prices of risk asso-
ciated with exogenous shocks, which by assumption
impact prices, there is no unified way to establish
whether such estimates are consistent with equilib-
rium pricing or are even economically justifiable.

The use of affine processes in connection with
Epstein-Zin preferences leads to notable differences
in equilibrium prices relative to equilibrium mod-
els based on Cox et al. (1985). In their equilibrium
framework, Cox et al. consider a time-separable utility
u= ftT u(C;,, Y,) ds defined over consumption C and
exogenous state variables Y. In the special case that
consumers derive utility from consumption only, the
state variables Y are not priced in equilibrium unless
their exogenous shocks are contemporaneously corre-
lated with consumption. Because it is hard to moti-
vate why variables such as expected growth rates or

growth rate volatility, should enter directly into the
utility function, most papers that have studied equi-
librium models of the style of Cox et al. have assumed
that state variables in some way correlate contem-
poraneously with consumption. For example, in Cox
et al. (1985), equilibrium interest rates are derived in
an economy in which consumption depends explic-
itly on exogenous “production processes.” In contrast,
long-run risk models generally assign positive market
prices of risk to exogenous shocks as long as those
shocks have long-run implications for aggregate con-
sumption and even if these shocks do not impact cur-
rent consumption.

There are a number of recent papers that study
the link between macroeconomic and term struc-
ture dynamics.! A typical approach in this litera-
ture is to specify an exogenous affine model for the
macroeconomy as well as latent factors and then to
assume that the short rate process is a linear func-
tion of these exogenous processes. In recent work,
Piazzesi and Schneider (2006) study an equilibrium
term structure model based on recursive preferences
and a negative long-run relation between expected
inflation and expected real growth.? The GE mod-
elling framework presented in this paper can pos-
sibly be construed as one that imposes parametric
equilibrium constraints on such no-arbitrage models.
The equilibrium constraints are testable and possibly
imply quite sharp restrictions on the yield curve data.
The approach outlined here also clearly addresses the
issue of which macroeconomic variables to use in
yield curve modelling: all variables, observable or not,
that affect dynamics of real consumption growth and
inflation matter for the term structure. The affine gen-
eral equilibrium framework therefore offers particular
guidelines as to the selection of candidate variables in
constructing yield curved models.

This paper is related to the extant literature in a
number of ways. The equilibrium is constructed using
an Epstein and Zin (1989) and Weil (1989) prefer-
ence structure, which again is based on the recur-
sive preference class of Kreps and Porteus (1978).
We follow Campbell and Shiller (1987, 1988), Bansal
and Yaron (2004), and Bansal et al. (2006) in com-
puting a linearized pricing kernel to facilitate the
construction of an affine pricing kernel. Bansal and
Yaron (2004) demonstrate that their model, in which
expected aggregate consumption and volatility follow
first-order autoregressive (AR(1)) processes, leads to
a resolution of the equity premium and short rate

! An incomplete list includes Evans and Marshall (1998), Ang and
Piazzesi (2003), Ang et al. (2005), Piazzesi and Schneider (2006),
Diebold et al. (2005), Duffee (2006), and Bikbov and Chernov (2005).

2 This feature of their model is similar to the one considered here.
The two papers were completed independently.
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puzzles. A number of papers building on the Bansal
and Yaron model demonstrate that long-run risk mod-
els may explain a number of asset pricing “puz-
zles,” including the cross-section of equity returns
(Bansal et al. 2004, Kiku 2006), foreign exchange
(Colacito and Croce 2006, Bansal and Shaliastovich
2006), and options pricing (Benzoni et al. 2005, Eraker
and Shaliastovich 2007). The use of continuous time
“affine processes” has a long tradition in finance,
and key contributions include studies by Black and
Scholes (1972), Cox et al. (1985), Duffie and Kan
(1996), and notably Duffie et al. (2000), who outline a
very general class on which results in this paper are
partly based.

The remainder of this paper is organized as follows.
The next section outlines assumptions and derives
equilibrium prices for stocks and bonds. Section 3
presents the example model of nominal prices and
discusses various properties of the equilibrium, and
§4 concludes.

2. Equilibrium Prices

We assume an economy in which a representative
agent receives an endowment consumption stream C,
for consumption at discrete times t =1,2,.... The
agent has Epstein-Zin utility

u,=[(1- S)Ct(l—v)/e + 6(Etut:7)l/0]9/(1—7), (1)

where 6 is the agents’ subjective discount rate, ¢
is his elasticity of intertemporal substitution, and
v determines preference for intertemporal resolution
of uncertainty (risk aversion). The parameter 6 is
defined as
-y
6= . ()
1—1/¢
The defining feature of Epstein-Zin preferences is the
recursive structure in which U, depends on future
expected utility U, ;. This is a key ingredient in
generating dynamic effects in long-run risk models.
Intuitively, even if a shock to expected growth or
volatility of dividends does not have an immedi-
ate effect on current consumption or dividends, if
the shock has an impact on future consumption, it
will impact the expected utility term E,U,,; and thus
impact the current utility U,. This has implications
for financial prices unless the utility function degener-
ates to a power utility (CRRA) utility, which happens
when ¢y =1/7.
The first-order condition for optimal utility pro-
duces the Euler equation

1=E©"G "R, R, 1)

t+1
0

= Etexp(ﬂlné U

S — L=0)r, g +71; t+1> )

where G,,; = C,,/C, is the consumption growth rate,
R, ;41 is the return on an asset that pays dividend
equal to aggregate consumption, and R, ,;,; is the
return on an arbitrary asset with index i. Epstein
and Zin interpret R, , to be the return on the market
portfolio.

2.1. Dynamics of Exogenous State Variables

We assume that there are n marketwide state variables
X, that are assumed to follow an affine process. This
implies that expected values of exponentiated linear
functions of these state variables can be written

¢(Sr u, x) = E(exp(uXH—s) | Xt)
= exp(a(s, u) + B(s, u)'X,) (4)

for some u either real or complex. We refer to ¢ as the
generating function. Appendix A gives a recipe for
computing the functions a and 8 under the assump-
tion that X, follows an affine jump-diffusion pro-
cess. Any process that satisfies (4) is termed an affine
process.

There are two immediate examples that character-
ize the class of processes that have exponential lin-
ear (or affine)-generating functions, as in (4). The first
class are Gaussian vector autoregressions (VARs). In
other words, if

Xy =u+AX, 1+ 3¢,

the generating function is ¢(1, u, X,) = exp(v'(n +
AX,) + 3u'Su). Our model would coincide with that
of Campbell (1993) if X, follows a Gaussian VAR.

A second important class of processes that produce
exponential affine-generating functions is affine jump-
diffusion processes. An affine jump-diffusion process
is a process X, € % for some % C R" described by

dX, = w(X,)dt + S(X,)dW, + £,dN,, 5)
where
w(x) =M+ Hx, (6)
S(x)=h+ ) xH, )
k=1

where h, H, € R™" for k =1,...,n. The process
N, eN" is a Poisson counting process with arrival
intensity A, = Ay + A X, for Ay e R}, A} e RP*", and &,
is a vector of jump sizes which distribution p(¢) is
assumed to have a known generating function o(u) =
Ee"¢. We assume that the moment generating function
exists (0(u) < oo for u € R").

The affine jump-diffusion process in (5) is a contin-
uous time process. The advantage of the affine class
is that it allows for, among other things, processes to
be restricted to be positive. In a discrete time model
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such as the one considered here, it is still permissi-
ble to model discrete time decisions that depend on
continuously evolving state variables. Decisions then
depend on the value of the state variables at discrete
times t =1,2,...,00. This effectively eliminates the
need to keep track of what the process does between
discrete decision times. Alternatively, we may inter-
pret X, as a process that evolves in discrete time but
with the same probability law as the corresponding
continuous time model.?

2.2. Dividend and Consumption Processes
We assume that the consumption and dividend
growth rates are linear functions of the state variables,

et =YXy, (8)
8t = Y(;Xt‘ )
This implies that
t+s
Co=Coxp( 2 x,), (10)
u=t+1
t+s
D, =D, exp( > y‘;Xu) (11)
u=t+1

The vectors 7y, and y,; may contain zeros in such a way
that the respective growth rates are driven by specific
state variables; i.e., they may be selection vectors.

It is important that the consumption and dividend
processes themselves are random walks and hence
that the corresponding growth rates are stationary.
In some cases, as will be illustrated in the example
models, it is convenient to model both consumption
and dividends as random walks. In this case, we may
transform the state variables by taking first differ-
ences of the nonstationary components.

2.2.1. Returns on the Aggregate Wealth. Let z,
denote the log price consumption ratio. We use the
Campbell-Schiller approximation to approximate the
return on aggregate wealth:

Ta i1 =Ko+ K1Zpp1 — 2 + 811y (12)

where k, and «k; are linearization constants.
Appendix C outlines how to compute these endoge-
nously. The linear form allows us to maintain a
tractable analytical form for the pricing kernel
Returns on all other assets will be computed explic-
itly, without approximation.

We conjecture a solution

z,=A+BX, (13)

% Darolles et al. (2006) study continuous time affine processes
observed at discrete times and call this class compound autoregres-
sive processes.

to the log price consumption ratio. Appendix B shows
that the Euler equation for aggregate wealth produces
the following equations for A and B:

0=/3(1,9(1—%)%+0K13) — 6B,  (14)

_ a1, 0(1—1/4)y. +6x,B) +6(In 5 + Ky)

A 0(1 —k;)

(15)

The solution to these equations can be computed
explicitly in a number of cases in which a and 8 have
simple forms. In the case that we can only compute
a and B numerically, Equation (14) must be solved
numerically. This equation may also have multiple
roots. Tauchen (2005) shows that the coefficient corre-
sponding to the stochastic volatility variable(s) in his
model solves a quadratic equation and hence has two
roots. It is similarly the case in the stochastic volatil-
ity examples presented below that the element of f3
corresponding to the volatility process has two roots.
In the example models there is typically one solu-
tion that provides economically reasonable behavior
of financial prices and a second solution that does not.
For instance, one solution often produces a negative
equity premium or an equity premium that is decreas-
ing in risk aversion. Thus, for the example models
considered here it is easy to find the only economi-
cally reasonable solution to (14).

2.2.2. Prices of Simple Claims. Consider an asset
that pays a single dividend, D,,,, at date t 4 5. The
value of this claim is
Pt — Et(aecfg/‘ﬁGg/lﬁR*(l*e)E

t+1" v, 41 Ft+1

(G R YD E (8GR PD,, L))

t+2 a,t+2
= E@"C GG GRS
RS R D)
= E,(6"C "G, /"R. Dy,
where

o/ t+s
- -0
C.;t+1: s = 1_[ Gu " ’

u=t+1

t+s
—(1-06) —(1-9
R =[] R, 0.

a,t+1:s — LU
u=t+1

We have used the law of iterated expectations and the
Martingale property of the discounted prices and the
fact that the return is defined as R,., =D, /P,.

We are interested in the expectations of the form
E, exp(Xi5.,, A,X,) for A, € R". The following techni-
cal lemma characterizes these expressions explicitly.*

* This result has been derived independently and in a different con-
text by Darolles et al. (2006). An application to no-arbitrage credit
risk can be found in Gourieroux et al. (2006).
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LemMA 1. Let X, be a process with transition den-
sity p(X,y1 | X,), the Laplace transform of which is
E(exp(y'X,,) | X, = x) = exp(als, y) + B(s, y)'x). Then
for constant vectors A,, ..., A,€C"

t+s
E (exp( > A;Xu>

u=t+1

xf=x)=exp<a(A)+B<A>x>, 16)

where B and @ are defined through the recursions
a(A) = a(l, A) + a1, A +B(A)
+---+a(l, A, + B(A,_ +B(A))
+oHBA +B(Ar+-+ B(A 1 +B(AY)) ),
X 17)
B(A) =B, A +B(1, ..., Ay
+B(1, Ay +B(1, Ay))---). - (18)

The following result establishes the foundation for
the evaluation of stocks and bonds.

ProrosITiON 1. Given a consumption process C,, ., =

!

Crexp(Xuts .1 v.X,) the price, P,, of an asset that pays a

t+s

single dividend claim D, ;= D,exp(3_,2 1 v4X,) is
P, =D, exp(F(s) + B(b)' X)), (19)
where

F(s)=[01n8 — (1= 6)(icg + (ky — 1) A)]s + a(b,)

and the sequence b, = {b, )5 is given by

b, = (0—g—l)yc—(l—O)(Kl—1)B+yd+(1—0)KlB,

bu=(0—%—Qn—(l—exxl—lwﬂw

foru=2,...,s

by =—(1—0)x,B,
(20)

and where A and B solve Equations (15) and (14), and the
functions & and B are defined in Lemma 1.

2.2.3. Prices of Bonds and the Term Structure.
The explicit expression for a one period discount bond
is found by setting s=1 and D,, ;=1 in Proposition 1

P,(s) = exp(F(s) + B(b.) X)), (1)

where F(s) and ﬁ(l_JS) are obtained through
Proposition 1 by setting vy, =0. The yield to maturity
of an s period zero coupon bond is

Fs) BB
s s
Because the yields are just linear combinations of
affine processes, they are themselves affine processes.
We define the “short rate” to be the annualized yield

to maturity of a one-period (one-month) zero coupon
bond.

r(s)=— X;. (22)

2.2.4. Prices of Stocks. The price of a claim to the
perpetual stream D, obtains as follows.

PrROPOSITION 2. Assume that X, is stationary. There
exists a subjective discount rate & € (0,1) such that
Yo exp(F(u) + ,é(bu)’Xt) < oo. The price of a stock,
P,, that pays a perpetual dividend stream D, =
D,exp(Xi5. viX,) is then

u=t+

P=D, Y exp(F) +B(b)X),  (23)

u=t+1

where the functions F and {3 are as in Proposition 1 and b,
is the sequence b, = {b,}"%1 of constant vectors correspond-
ing to a time u dividend payment, as in Proposition 1.

The above characterization eliminates the need for
linearization of the log price-dividend ratios in com-
puting theoretical stock prices. Note that the formula
in (23) is not linear in X,.

3. Empirical Application

We now discuss a specific model and its ability to
explain stylized facts from financial market data. We
are interested in specifying a model that can cap-
ture known asset pricing puzzles such as the equity
premium and the risk-free rate puzzles, as well as
capturing other dimensions of the data such as stock
market crashes. A key point of the model presented
here is that it produces an upward-sloping average
yield curve. This contrasts with some existing long-
run risk models for which the average yield curve is
inverted.

Long-run risk models are well known to resolve
some of the known asset pricing puzzles. Notably,
Bansal and Yaron (2000, 2004) demonstrate that their
model generates a significant equity premium and
a low real risk-free rate and high-equity volatility
yet maintains a consumption growth rate with low
volatility. Bansal and Yaron (2000) discuss the slope
of the yield curve in their model and note that,
on average, the term structure has a negative slope.
Although their model is set in real terms, the results
from real models carry over to nominal models if one
assumes that inflation dynamics does not impact the
real growth rates (superneutrality). Because the nom-
inal yield curve in the United States during most time
periods has been upward sloping, the inverted yield
curve represents a challenge to long-run risk models.

Piazzesi and Schneider (2006) propose a nominal
bond pricing model based on long-run risk/Epstein-
Zin. Their model contains recursive preferences and
inflation and real growth processes that follow
a Gaussian vector autoregressive moving average
(VARMA)(2,2). Their estimated parameters imply that
shocks to inflation have a negative long-run impact
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on real growth. Thus, in their model, the inflation
plays a role similar to that of the current paper in
that it correlates negatively with long-run real growth.
The two models are still different along some impor-
tant dimensions: First, the current model has stochas-
tic volatility and jumps. The presence of both these
components makes it harder to achieve realistic term
structure patterns, as these risks tend to invert the
yield curve. Second, although Piazzesi and Schneider
(2006) do not consider their model’s implication for
equity returns, the model considered here generates a
large equity premium. Finally, all results in this paper
are based on positive subjective discount rates and
values of the risk-aversion parameter lower than 10,
whereas Piazzesi and Schneider use a negative subjec-
tive discount rate (6 = 1.005) and very high risk aver-
sion (y = 57) to generate a positively sloping yield
curve.

The goal of the example model considered here is
to capture the equity premium and the risk-free rate
puzzles, generate an upward-sloping yield curve, and
capture the possibility departures from normality that
have been extensively documented for equity returns.
To this end we study a model that generalizes the
Bansal and Yaron (2004) long-run risk model to a set-
ting in which the volatility driving consumption and
dividend growth rates are affected by possibly large
shocks. The dynamics for consumption and dividends
are derived from the continuous time model,

dIn G = (. +x,+ Qum, — 3V,)dt +/V,dB;,  (24)

dIn D} = (uy+ ¢x, + Qum; — @3Vt + ¢,/ V,dBY,
(25)

where actual consumption C, and dividends D,
equal the continuous processes C, = C; and D, =
Dy at discrete times. The variable x, determines the
expected real growth rate. The expected inflation, m,,
impacts the real consumption and dividend growth
rates, and the impacts are given by the parameters
Q. and Q,. The parameter u, is the unconditional
long-term expected consumption growth and ¢ is
a “dividend leverage” parameter that, when greater
than unity, indicates that corporate dividends can
be seen as levered claims to aggregate consumption
plus idiosyncratic noise. The terms 1V, and ¢3V, are
included to ensure that the mean geometric growth
rates equal w. and pu,, respectively.

The processes x, and V, account for time variation
in expected growth and volatility respectively. They
follow

dxt = _Kxxtdt + ¢E\/Vde;(/ (26)
AV, =k, (V = V)dt + o, /V,dB! + &dN,.  (27)

The parameters k., and k, measure the speed of mean
reversion in expected growth rates and volatility,
respectively. The parameter ¢, measures the amount
of volatility in the expected growth rate. Innovations
in the volatility process V, come from two sources—
shocks in the Brownian motion BY and the com-
pound Poisson process {£,, N,}. The jump sizes, &,, are
assumed to be exponentially distributed,

& ~exp(uy), (28)

and the Poisson process, N,, has independent arrivals
with intensity parameter A, + AV, such that volatil-
ity jumps arrive more frequently when volatility is
already high if A, > 0.

The jump in volatility specification allows us to
study the equilibrium stock price impacts of small
and large shocks to the aggregate volatility pro-
cess. This is empirically relevant because the volatil-
ity process V, not only impacts the volatility of the
macroeconomy but also impacts stock price volatil-
ity in our model. A number of papers document a
negative correlation between stock price volatility and
stock returns. We are interested therefore in the mag-
nitude by which prices depreciate for different volatil-
ity shocks in our model. For large volatility shocks,
modelled through the jump term &,dN,, we demon-
strate that stock prices exhibit crashlike behavior. This
is consistent with casual empirical observations; for
example, implied volatility of the S&P 500 increased
dramatically from about 25% to 70%-80% during the
crash of October 19, 1987. More recently, the —3.5%
drop in the S&P 500 on February 27, 2007, was accom-
panied by an increase in the VIX implied volatility
index from about 11.5% to 18%. Eraker et al. (2003)
and Eraker (2004) find strong evidence for the simul-
taneous occurrence of volatility jumps and negative
price jumps in the context of no-arbitrage models. The
model considered here offers an equilibrium interpre-
tation of these results.

Our model, so far, has abstracted from inflation,
and prices are interpreted in units of the consump-
tion good. To introduce a framework that rivals that
of no-arbitrage models in applicability, we now turn
to a model of nominal bond yields and nominal stock
returns. Part of what motivates this extension is the
question of whether we can specify the model in such
a way that we can recover a positively sloping yield
curve while maintaining essential model characteris-
tics that make the models consistent with observed
equity market data.

In pursuing this we will model inflation as exoge-
nously given. If inflation is an exogenously given ran-
dom walk independent of the real variables in the
economy (superneutral), it is straightforward to show
that inflation has no effect on prices. Thus, under
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inflation superneutrality the nominal term structure
equals the real term structure plus expected inflation
growth. Inflation neutrality, therefore, does not turn
the negatively sloping real yield curve of Bansal and
Yaron (2000) into a positively sloping nominal one.

We specify a model in which inflation and long-
term inflation growth affect financial market prices.
We are particularly interested in analyzing a situation
in which long-term inflation growth correlates nega-
tively with real growth rates. This is consistent with
the empirically observed strong negative correlation
of —0.52 between inflation and real growth rates in
consumption and dividends. It is also consistent with
empirical evidence in Christiano et al. (1999), Ang
and Piazzesi (2003), and Piazessi and Schneider (2006)
among others, showing negative impulse response
functions for monetary shocks on real aggregates.

In considering the impact on inflation on nominal
zero coupon bond prices, consider a general formu-
lation where inflation is a linear function of state-
variables,

iy =X

The nominal price of a $1 zero coupon bond is then
0
P,(s) = E,exp| sfInéd — Egm;”s

—-(1- o)ra,t+1:t+s - it+1:t+s>' (29)

This expression is identical to the expression for a
single dividend paying stock with y, = —v;. Thus,
we can interpret nominal bond prices in the presence
of inflation as a claim to (negative) future inflation
growth.

We assume the following inflation dynamics:

di, = m,dt + o.dB}, (30)
dmt:Km(lT—mt)dt—I—O'm«/mtdBlm, (31)

where i, is the inflation rate and m, is the expected
inflation rate.

We calibrate the nominal price model using infla-
tion parameters i=0.0033, K, =0.03, 0y =8e — 6, and
0, =0.01. This generates an annual average inflation
of 4%, with a standard deviation of 3.8% and first-
order autocorrelation of 0.7. These numbers are cho-
sen to match the postwar inflation data in which the
correlations between real dividend growth and con-
sumption growth and inflation both are about —0.52.
In addition, we choose Q. = —0.65 and Q, = ¢Q,,
respectively. This generates annual correlations of
—0.52 and —0.48 between inflation and consumption
and inflation and consumption and dividend growth,
respectively. This compares to —0.52 in the data.

Table 1 presents key asset price moments, including
bootstrapped confidence intervals. The table serves

Table 1 Moments of Asset Returns Data

1 2 3 4 5 6 7 8
Equity prem. Ret.std. Skew. Kurt. 1yr. Std. 10yr. Std.

7.83 18.78  0.219 10.93
1% 2.23 1438 —1.04 436
99% 12.09 2484 119 13.89

6.57 2.96 7.63 234
477 15 6.26 1.04
9.06 3.94 9.85 3.03

Notes. This table reports key moments of U.S. asset market data. The equity
premium is the average rate of return over the risk-free rate using the CRSP
value weighted index and data from 1926 to 2006. Columns 2—4 show the
standard deviation, skewness, and kurtosis of market returns. Columns 5-8
show average and standard deviations for nominal bond yields of maturities
for 1 and 10 years using data from Gurkaynak et al. (2006) from 1971 to
2006. The bottom two rows give bootstrapped 1 and 99 percentiles of the
sampling distributions.

as a benchmark that the theoretical models can be
held to. The stock price data are based on the monthly
Fama-French data from 1926-2006. The yield curve
data is from Gurkaynak et al. (2006), using data from
1971-2006. The tabulated sample moments and corre-
sponding confidence intervals in Table 1 suggest that
key moments such as the equity premium and the
average yield on one- and ten-year bonds are impre-
cisely estimated. For example, the 98% confidence
interval for the equity premium is (2.23, 12.29), which
is quite wide.

Table 2 displays the main asset pricing character-
istics of the nominal pricing model. First, the results
show that the model is capable of generating equity
premiums from virtually zero to more than 9% for
v=8 and ¢ = 5. These preference parameters are
within the range many economists would consider
reasonable. Thus, this model, like other long-run
risk models, resolves the equity premium puzzle. It
also generates low-risk free rates for larger values
of . If ¢ is equal to one half, the model generates
a small equity premium and a very high-risk free
rate. Because the standard CRRA power utility model
obtains as a special case of Epstein-Zin when ¢y =1/,
low values of ¢y produce asset prices that resemble
prices in the CRRA model. It is not surprising, there-
fore, that low values of i fail to resolve the equity
premium and risk-free rate puzzles.

Table 2 also illustrates the interaction between asset
prices and expected inflation. The superneutral case
(Q. =Q,; =0) produces two notable effects: First, the
equity premium is somewhat lower than in the non-
neutral case. Second, the super-neutral model pro-
duces a downward sloping nominal yield curve. In
contrast, the nonneutral model produces a positively
sloping yield curve for high values of the IES param-
eter, . This is illustrated in Figure 1, which shows
that the yield curve is always downward sloping
for the superneutral parameter configuration. Con-
versely, when expected inflation negatively impacts
real growth, the yield curve is upward sloping for
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Table2  Asset Price Implications of the Nominal Price Model
y 6 8 10
] 0.5 3 5 05 3 5 0.5 3 5
Nonneutral
Equity prem. 0.53 2.46 2.70 1.78 5.33 5.67 3.88 8.60 9.13
Mean (annual) 11.33 9.52 9.44 13.10 12.18 12.07 16.06 15.14 15.20
Std. (annual) 11.69 19.52 20.33 11.64 18.98 19.58 12.27 18.72 19.24
Skewness —0.04 —0.03 —0.03 —0.05 —0.03 —0.03 —0.04 —-0.03 —0.03
Kurtosis 3.29 3.36 3.37 3.30 3.35 3.35 3.36 3.37 3.38
Corr(al,, r,) —0.02 —0.03 —0.03 —0.05 —0.06 —0.06 —-0.07 -0.07 -0.07
1-yr. bond yield 10.80 7.06 6.74 11.31 6.85 6.41 12.18 6.54 6.07
10-yr. bond yield 9.81 7.35 7.19 9.57 7.49 7.26 9.76 .77 7.68
1-yr. yield std. 3.56 1.80 1.89 3.58 1.72 1.79 3.65 1.62 1.66
10-yr. yield std. 1.31 0.69 0.73 1.33 0.76 0.82 1.36 0.91 0.98
Superneutral
Equity prem. 0.07 1.18 1.33 0.67 2.46 2.65 117 3.68 3.72
Mean (annual) 10.69 8.49 8.35 11.46 9.69 9.56 12.20 10.85 10.55
Std. (annual) 10.43 15.89 16.37 10.24 15.25 15.67 10.01 14.66 15.07
Skewness —0.00 —0.00 —0.01 —0.01 —0.01 —0.02 —0.01 —0.04 —0.04
Kurtosis 3.32 3.36 3.36 3.35 3.38 3.40 3.46 3.54 3.51
Corr(aV;, r) —-0.02 —0.04 —0.04 —0.06 —0.09 —0.09 —-0.10 -0.13 —-0.13
1-yr. bond yield 10.62 7.31 7.02 10.79 7.23 6.91 11.02 7.7 6.83
10-yr. bond yield 9.64 6.94 6.72 9.16 6.67 6.46 8.70 6.36 6.17
1-yr. yield std. 4.20 2.51 2.45 4.28 2.52 2.46 4.32 2.57 2.45
10-yr. yield std. 1.47 0.79 0.76 1.50 0.80 0.77 1.52 0.82 0.77

Notes. This table reports key asset price properties for nominal financial prices for different values of intertemporal elasticity of substitution, ¢, and timing
resolution of uncertainty, y. The numbers are population moments. We consider two inflationary regimes: The first is superneutral inflation, which implies no
correlation between expected inflation shocks and real growth, Q, = Q, = 0. The second is a nonneutral case where expected inflation impacts long-run real
growth through Q, = —0.65 and Q, = —2.275. The remaining parameters are k, = 0.025, p = p, = 0.0015, ¢ = 3.5, ¥ = 0.022/12, k, = 0.04, ¢, = 0.07,
0, =450,=22e—4, 1,=0,\, =252, u, =26 — 5,1 =0.04/12, k,, = 0.03, 0, =8¢ — 6, g,, = 0.01.
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=3 and ¢ =5. Low values of ¢ produce negative
term premia even for the nonneutral model.

3.1. Impact of Jumps

A novel feature of the model considered here is the
possibility of large increases in macroeconomic uncer-
tainty, as suggested by the presence of jump com-
ponent in the volatility. We investigate the impact of
these jumps on asset prices in Figure 2, which shows
the impulse response of comparatively large volatil-
ity shocks for the models with and without volatility
jumps. A volatility shock with a one percent chance
of occurring leads to a negative 4.7% drop in the log
stock price for the jump model and a 2.5% drop in
the model with the continuous volatility path. Thus,
the inclusion of volatility jumps in the model implies
much more pronounced negative stock price reactions
to shocks in the economic uncertainty.

Table 3 tabulates the pricing implications for a
model without volatility jumps. This allows us to com-
pare the effects of including jumps in the model, as
shown in Table 2. To make a fair comparison, we
ensure that o and o, are chosen such that the first
two moments of V, match the case with jumps. This
allows us to isolate the equilibrium effects of intro-
ducing jumps.

The following patterns emerge: First, the equity
premiums are systematically lower, by as much as
one percent, when excluding the jump component.
Second, the correlation between stock returns and
changes in volatility is more negative for the jump
models in Table 2 than the nonjumping models in
Table 3. Third, the yield curve has a more pronounced
negative slope when there are jumps in the model.
This is related to the following economic effect:
A shock in volatility makes the stock market relatively
unattractive, and prices fall. Bond prices respond pos-
itively, and yields negatively, in response to a volatil-
ity shocks. The bond “factor loadings” are greater
in magnitude for longer-maturity bonds. They are
also greater in magnitude when the model includes
jumps. This is illustrated in Figure 3, which shows the
bond factor loadings as a function of maturity with and
without jumps in the model. Thus, the longer-maturity
bonds carry a larger volatility risk premia for the jump
model than the nonjump model. Because the volatil-
ity risk premia are negative, the presence of jumps in
the model leads to a more inverted yield curve than
in the pure diffusion model. More generally, the more
“action” in the stochastic volatility process, the more
inverted the yield curve. For this reason, it is much
more challenging to formulate a long-run risk model
that produces an upward sloping yield curve in an
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Figure 1 Nominal Term Structures: (Left) Super-Neutral Case; (Right) Nonneutral Case
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environment with stochastic volatility than to formu-
late one in an environment without. We illustrate this
again in Figure 4, which shows that yield curve turns

Figure 2 Impulse-Response Functions Stock Prices Given Shocks to
the Volatility Process
0.03 . : : : :
0.02f / ]
0.01f+ g

oOF # .

Log-stock price
&
2

-0.02 b
-0.031 i
4~ 1/2% w/ jumps
-0.041 <= 1% w/ jumps |4
1/2% no jumps
-0.05 -+ 1% no jumps |
~0.08 5 10 15 20 25 30

Months
Notes. Shown is the impact on the stock price of negative shock with a 0.5%
and 1% chance of occurring, and for the model with and without jumps in
volatility.

increasingly negatively sloping as the volatility of o,
increases. This effect is also present and much stronger
for volatility jump size .

Note that because the model in Table 3 contains no
jumps and produces a zero (expected) inflation risk
premium, it has only two priced risk factors, x, and
V.. Nominal prices in this model equal real prices plus
expected inflation growth. The real prices produced
by this model are therefore very similar to those of the
Bansal and Yaron (2004) model, and the numbers dis-
played are in the same ballpark as those reported by
Bansal and Yaron (2004). Clearly, adding the risk pre-
mium for the expected inflation as well as volatility
jumps leads to a dramatic increase in the equity pre-
mium. Alternatively, by including equilibrium infla-
tion and jump risk premiums, the model is capable
of capturing the equity premium, risk-free rate, and
term premium at lower values of y than in Bansal
and Yaron (2004) and at much lower values than in
Piazzesi and Schneider (2006).

3.2. Euler Equation Errors
In a recent paper, Lettau and Ludvigson (2005) argue
that “leading asset pricing models” do not fully
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Table 3 Asset Price Implications Without Jumps
Y 6 8 10
U 0.5 3 5 0.5 3 5 0.5 3 5
Nonneutral
Equity prem. 0.50 2.23 2.43 1.61 3.06 4.50 3.66 7.68 8.02
Mean (annual) 11.30 9.39 9.24 12.87 8.77 7.55 15.71 14.43 14.33
Std. (annual) 10.81 18.27 18.98 10.86 16.43 11.93 11.66 17.36 17.82
Skewness —0.04 —-0.04 -0.03 —-0.06 —-0.04 —0.05 —-0.05 —-0.02 -0.02
Kurtosis 3.22 3.33 3.35 3.28 3.39 3.24 3.36 3.39 3.39
Corr(aV,, 1) -0.01 -0.02 -0.02 -0.03 —-0.03 0.01 —-0.04 —0.04 —-0.04
1-yr. bond yield 10.79 7.16 6.81 11.26 5.71 3.04 12.05 6.75 6.31
10-yr. bond yield 10.00 7.52 7.31 9.86 5.58 2.58 10.17 7.63 7.43
1-yr. yield std. 3.16 1.78 1.86 3.14 1.65 2.87 3.22 1.53 1.49
10-yr. yield std. 1.16 0.68 0.72 1.16 0.63 1.05 1.19 0.78 0.81
Superneutral
Equity prem. 0.22 0.86 1.12 0.60 1.92 2.08 0.90 2.92 3.10
Mean (annual) 10.83 8.24 8.21 11.34 9.23 9.09 11.81 10.20 10.06
Std. (annual) 9.27 14.10 14.53 9.16 13.62 14.09 8.92 13.23 13.72
Skewness 0.01 0.00 0.00 0.00 0.01 0.00 0.00 —-0.00 -0.01
Kurtosis 3.21 3.21 3.22 3.20 3.21 3.22 3.21 3.21 3.18
Corr(aV,, r) —-0.01 —-0.02 -0.03 —0.04 —0.06 —0.06 —-0.06 —-0.08 -0.09
1-yr. bond yield 10.61 7.38 7.09 10.74 7.31 7.01 10.90 7.28 6.96
10-yr. bond yield 9.83 7.06 6.83 9.46 6.86 6.64 9.09 6.66 6.46
1-yr. yield std. 3.87 2.42 2.40 3.92 2.49 2.41 3.99 2.50 2.43
10-yr. yield std. 1.34 0.76 0.75 1.36 0.78 0.75 1.39 0.79 0.76

Notes. This table reports implications for nominal financial prices without jumps (A, = A, = 0). All parameters are as in Table 2 except v and ¢, which are
v =2.963e — 5 and g, = 3.852¢ — 4. This ensures the first two conditional moments of the volatility process, V;, are the same. Remaining parameters are as
in Table 2.
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capture the failure of the standard consumption-based
power utility model. Their argument is simple: The
standard power utility C-CAPM Euler equation does
not hold empirically for U.S. postwar data. That is,
there exist no values of y that will set the average

pricing error e =E(exp(—y*Q)R)

to zero. Here R is a vector (real) of stock returns in
excess of the (real) risk-free rate, and g is real log

that some model is the “true” model of asset price
dynamics, meaning that the model has the same data-
generating process as in the observed data. Thus, if
le| > 0 in the data, it must be that |e| > 0 for simulated
model data as well. Otherwise, the data-generating
processes cannot be the same in the model economy
as in the observed data.

consumption growth, and y* minimizes e?. Assume  Figure4  Yield Curve Slopes
-158.80———————— -150
Figure 3  Volatility Factor Loading for Bonds, 8,, Which Measures
the Sensitivity of Interest Rates with Respect to Changes in —158.85¢ -160 p
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Note. The factor loadings are shown for the volatility jump model and the
model without jumps.

of exogenous shocks to macro volatility. When “small” (Brownian motion)
shocks are magnified through higher values of g, (left panel) or large shocks
(jump sizes) through w, (average jump sizes) (right panel), the yield curve
slope becomes increasingly negative.
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Table 4 Euler Equation Errors
Y 4 6 8 10
y=3
Jumps 0.00 0.42 0.33 0.46
No jumps 0.00 0.00 0.32 0.42
y=5
Jumps 0.04 0.27 0.37 0.60
No jumps 0.00 0.20 0.30 0.39

Notes. This table shows Euler equation errors (EEE) for the model with and
without jumps in the volatility. Lettau and Ludvigson (2005) compute the EEE
for a number of models proposed in the literature and show that these mod-
els generate zero EEEs. The EEEs are 0.48 in the Lettau-Ludvigson sample
period.

Lettau and Ludvigson (2005) compute e for a num-
ber of candidate asset pricing models and show
that all the models considered produce zero pricing
errors. This contrasts with the data, for which the
errors are substantial. In conclusion, therefore, the
DGP of observed U.S. consumption and returns data
differ from that of “leading models,” including the
Campbell and Cochrane (1999) external habit model,
Menzly et al. (2004) habit model, Guvenen’s (2003)
limited participation model, and Bansal and Yaron's
(2004) long-run risk model.

Lettau and Ludvigson (2005) further demonstrate
that positive Euler equation errors can be explained
by non-Gaussian innovations in consumption growth
and returns. In particular, they show that when data
in a limited participation model are generated from
(severely) non-Gaussian joint distributions, simulated
data can produce Euler errors that match those of
observed data. An interesting question, therefore, is
whether the non-Gaussian jump models considered
here can similarly generate non-zero Euler errors.

Table 4 reports Euler equation errors for the mod-
els under consideration here with parameter values
as before and with ¢y =3 and ¢ =5. As shown, the
models generate non-zero errors for a number of the
parameter constellations. For actual U.S. consumption
and asset returns data, Lettau and Ludvigson (2005)
show that the Euler error is 0.48. Table 4 shows that
v =10 produces a Euler equation error of 0.46 for the
model with volatility jumps and 0.42 for the model
without. Thus, the volatility jumping model provides
a pricing error that is almost identical to that observed
in the data. It should also be mentioned that Euler
errors computed under these models have very large
amounts of statistical estimation uncertainty in small
samples.

4. Conclusion

This paper has presented a general framework for val-
uation of stocks and bonds based on an Epstein-Zin
preference structure and under general assumptions

about the dynamics of state variables that affect con-
sumption and dividend growth. The example model
presented demonstrates that this framework is capa-
ble of explaining well-known asset pricing puzzles
and generating prices the distributional characteristics
of which mimic those observed in equity markets. The
Epstein-Zin preference structure represents an impor-
tant component in explaining asset pricing puzzles as
it disentangles the elasticity of substitution from the
temporal resolution of uncertainty. This produces low
bond yields, high equity returns, and higher-order
moments that are in line with observed data.

This paper delivers a framework for analyzing
stock and bond prices that effectively can be seen as
an equilibrium version of no-arbitrage factor mod-
els. The advantages relative to standard no-arbitrage
models are that the links to macroeconomic time
series are explicit and the factor “loadings” that deter-
mine the various assets’ sensitivity to changes in the
economic variables are explicit function parameters
that determine the dynamic behavior of macro quan-
tities and, more importantly, preferences. This allows
a fairly rich framework for analyzing the link between
macro and financial market variables. It also allows
for a fair amount of flexibility in allowing for unob-
served components such as expected growth rates
and volatility. This is similar in spirit to no-arbitrage
models but has the advantage that these latent factors
have economic interpretations. Again, this facilitates a
closer examination of the links between financial mar-
ket dynamics and the macroeconomy. In building on
this framework it is possible to construct quite flexible
models of yield curve dynamics while maintaining
an equilibrium foundation. This is likely to produce
an interesting equilibrium-based alternative to the
growing body of papers that study the link between
macroeconomic dynamics and the term structure.
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Appendix A. Recovering o and

The conditional Laplace transform is exponential affine, as
in Equation (4) with coefficients a and B that satisfy the
complex Ricatti ODEs

W = F'B(t, u) + 2 B(s, u) HP(s, u)
+Ai(0(B(s, u) = 1), (A1)

% = M'B(s, u) + 3 B(s, u) hB(s, u)
+29(0(B(s, w)) = 1), (A2)
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with boundary conditions B(0, ) = u, a(0, ) = 0. The prod-
uct B(s, u)’HB(s, u) denotes the n dimensional vector with
k’th element B(s, u)'H,B(s, u).

Appendix B. Computing A and B
Using the log-linear form of the consumption wealth ratio,
the Euler equation becomes

0
0= lnEtexp<01n8— Jgt“ +9ra,t+1>
1
= lnEtexp<01n3—0<J — 1)gtJrl + 0y + 0Kz, —Ozt)
1 /
= lnEtexp<01n8—0<E - 1>)'CXt+1

+ 0Ky + 0k (A+B'X,,1) —0(A+ B’Xt)>

=InE, exp(01n8+ (0(1 — i)'yc + 6K1B> X

+ 0(ky— A) + 0k, A — OB’Xt)

1
= 60Ind+ Ok + 0(k; — 1)A—|—a<1, <0<1 - J>yc+(9k13>)

-2

The last line uses the expression for E,exp(BX,,,) in
Equation (4). The last line can only be equated to zero if A
and B satisfy Equations (15) and (14).

Appendix C. Linearization Constants
The following equations are solved as part of the
equilibrium:

eE(Zt)

= e (1)

Ky
ko= —In[(1—K;) ™ 1k}'], (C2)
where z, is the log consumption-wealth ratio.

Appendix D. Proofs
Proor or LEmMA 1. Using iterated expectations,

t+s
E, (exp( > A;Xu>>
u=t+1

A X A'X, Al X,
= Et(e 1 f+1Et+1[e H2 %X EH—s—l[e t+s t+5] ... ])
= Et (eA;+1Xt+1 EH—l [eA;+2Xf+2 X oo
Al Kpps Al X,
X Ey g pleftes1ttemE et te]] - )
! ’
= E (M X E, [ M2
x Et+572[ea(1'At+s)+(At+s—1+B(11AH—5))’XH—5—1] )
’ ’
= Et(eA+f+1 XHlEtH [eA Xi42 5 oo
a1, A (Apss 1 4B, Aprs)) Xprs_
X e ( t+s)Et+572[e t4s—1 t+5)) Xts 1] e ])
=E(-xE_ 3
.[g“(l'At+5)+A;+572Xt+s—2+“(1/At+571+3(1l Apgps) B, Apys1+B(1, At+s>)’Xt+s—1] )
— Et( LoX e“(lz Apys)ta(l, Apps 1+B(1, Apys))

. Et_s_3[e(At+s—z+B(1,Az+s—1+l3(1, At+s)))'Xt+s—1] ). O

Proor or ProPoOSITION 1.

0
Pt/Dt = Et exp(s@lnﬁ - Jgt+1:s - (1 - e)ra, t+1:s +lnDt+s>

! tts
=Etexp(st91n$+('yd——yc> > X, —(1-9)

l'[j u=t+1

t+s
-2 (kg +r A+ryB'X _A_B/Xu"")’éxu))

u=t+1

=E exp([01n5 —(1-0)(kg+ (k; —1)A)]s

2] ! t+s
+<yd_Eyc> Z Xu_(l_e)

u=t+1
t+s
: Z (KIB,Xu - B/Xu + Yéxu)
u=t+1

— kB X1+ KlB/XH—s-%—l)
=E exp([@lnﬁ —(1=06)(kg+ (k; —1)A)]s
(0= -1)ntv- -0 - 8]

t+s
. Z X, —(1—-0)(kB' X151 — KlB/XH_l))

u=t+1

This is of the form given in Lemma 1 with coefficients as
suggested in the proposition. O

PROOF OF PROPOSITION 2. Stationarity of X, implies that
(a(s), B(s)) = (a,0) as s — oo; ie. the limiting generat-
ing function does not depend on the initial state, X,. This
implies that for finite constants a, b € R x R"

lim Etezt"ﬂ b Xy eas—%—sb’Xt i

S—00

with b, as given in Proposition 1. Thus,

i 610 3—(1=6) (o +(x1 ~1) A)ls+@5+B,X;
s=1

_ i AOIN & —(1=0) (ko + (k1 ~D AV +a+b Xels _

s=1

for some 6* < exp{[(1—0)(k,+ (k; —1)A) +a+b'X,]/6}. O
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