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Abstract

We present empirical evidence showing that Option Implied Risk Measures (OIRMs) are substan-

tially impacted by bid-ask spreads in underlying options. Asking prices are more sensitive to shocks

than bids, leading to highly skewed distributions of spreads. We derive and estimate a model of

market making that empirically matches these asymmetric responses as well as the time-series prop-

erties of bid-ask spreads. Using these estimates to obtain bias-corrected option quotes, we compute

several popular OIRMs. We find that fear and risk premia associated with market events that affect

the center of the return distribution or unpredictable return jumps are on average overstated when

relying on option mid-quotes, whereas risk associated with return-tail events is larger once the bias

has been corrected.
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1 Introduction

Since the pioneering work of Black and Scholes (1973) and Breeden and Litzenberger (1978),

academics have understood that risk-neutral distributions of stock returns can be reverse engineered

from option prices alone. This has led many researchers to compute option-implied measures of

variance and higher order moments of stock returns. The most widely known option-implied risk

measure (OIRM) is the volatility index, VIX, which is computed in near real time by the Chicago Board

of Options Exchange (CBOE). Bakshi, Kapadia, and Madan (2003) derive a formula for computing

option-implied risk-neutral skewness which has subsequently been applied by the CBOE to compute

their skewness index (SKEW). Schneider and Trojani (2018) derive formulae for higher order moments

while Bollerslev and Todorov (2011) and Bollerslev, Todorov, and Xu (2015) derive measures of jump

risk based primarily on prices of deep out-of-the-money (OTM) index options.

Option prices are subject to microstructure noise. Bliss and Panigirtzoglou (2002) study option-

implied density functions and find that they are heavily impacted by small perturbations in prices.

Hentschel shows that implied volatility computations are sensitive to price errors, especially options

with low strike prices. Dennis and Mayhew (2009) show that noise induces a bias in the estimates

of risk-neutral moments, including implied volatility. Muravyev and Pearson (2020) point out that

transactions usually take place inside of posted bid-ask quotes, effectively leading to a lower cost of

trading than the usual half spread or effective spread estimates that are typically used to gauge trading

costs. The authors further report that trades are mostly seller-initiated on average, as trade prices

tend to be closer to bid quotes than ask quotes.

We contribute to this literature by studying the impact of market microstructure noise on the

computation of OIRMs. First, we present reduced-form evidence on the determinants of option bid-ask

spreads. Spreads are empirically negatively related to volatility changes (measured by the differenced

realized variance), returns, and a month-end seasonal dummy. Spreads depend positively on concurrent

volatility, on the expiration cycle of options, and on the interaction between inventory, vega (sensitivity

to volatility changes), and local variance of the market makers’ positions. Spreads also correlate

positively with VIX levels. In particular, the spreads widen considerably during high-volatility periods

such as the financial crisis 2008-2009.
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To understand the relationship between bid-ask spreads, volatility, and inventories we derive a

simple model of market-making behavior. The model features a market maker who will take a volatility

position such as a delta-hedged option position that could, for instance, be a (synthetic) variance

swap. Her total risk is then driven by inventory multiplied by the vega of the option position. The

market maker posts bid and asking prices and faces an exogenous price-elastic demand. In line with

the empirical findings in George and Longstaff (1993), the length between order arrivals depends on

the size of bid and ask mark-ups, which are defined as the differences between the market maker’s

posted quote and an objective value of the option or option portfolio. In equilibrium, the market

maker increases her asking price (bid price) in response to negative (positive) inventories. The size

of the asymmetric adjustment is impacted by the volatility. Thus, the model delivers a (non-linear)

relationship between market makers’ inventory, volatility, and the bid-ask spread, similarly to Ho and

Stoll (1981), although importantly it features time-varying spreads. We estimate the model using

likelihood inference, which allows us to recover estimates of model parameters and the mark-ups on

bid and ask prices charged by market makers. We find that objective, true values of options are likely

to be closer to bids than asks. This finding is supported by Muravyev and Pearson (2020), presuming

that trade prices are reflective of actual market value on average.

In order to investigate the impact of the market microstructure noise on the computation of OIRMs,

we compute the VIX, the variance risk premium (VRP) of Bollerslev et al. (2009), the Fear Index (FI)

of Bollerslev and Todorov (2011) and Bollerslev et al. (2015), the SKEW, and the associated skewness

risk premium (SRP) of e.g. Sasaki (2016) using midpoints and bias-corrected option quotes that

result from our model estimates, respectively. For the VIX and the VRP, the mean of the midpoint

exceeds the bias-corrected computations by 3.7% and 25.3% in monthly variance units, respectively.

In monthly volatility units, the latter difference is 0.299 or 11.9%. To put it into perspective, if an

investor demands an extra 11.9% premium every month in order to hold the volatile security, she will

collect an additional 286.2% volatility premium in expectation over a year. This in itself is a relatively

large number. However, this number dwarfs in comparison to the asymmetry’s relative impact on

higher order measures. By computing our equivalent of the CBOE SKEW index, we show that when

it is computed from bias-corrected prices, its standard deviation is more than ten times larger than

when it is computed from midpoints. The FI differs substantially in both mean and standard deviation
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(as well as higher order moments) when computed from bias-corrected prices and mid-quotes. The

differences in the SKEW and the FI computed from the two different quotes result from the fact that

these indices are highly dependent on OTM option prices. Yet, OTM options are often quoted at

minimum bids of 5 cents while the asking prices may be anything from 10 cents and up. This implies

that OTM options, which are eligible to be included in the computation of the indices because they

have a quoted bid, will mechanically have a minimum spread of 100%, and often are quoted with

spreads of 10, 20, or even 30 cents.

The remainder of the paper is organized as follows. In the next section, we present reduced-form

evidence pertaining to the asymmetry of bid and asking prices for options. Sections 3 and 4 present

our theoretical model along with empirical estimates of model parameters. In Section 5 we examine

the implications for OIRMs. Section 6 concludes.

2 Data and Asymmetric Spreads

We rely on daily data from OptionMetrics collected over the period 1998-01-02 to 2014-08-29. Since

prices increase over time, raw bid and ask quotes are nonstationary. To facilitate the construction of

a stationary time series of comparable bid and ask prices over time, we compute daily series

V IXj =
∑

i

wiCt(Ki)
j (1)

for j = {a, b} and where

wi =
1

T

△Ki

K2
i

er(T−t) (2)

which is identical to the formula for computing the squared CBOE (squared) VIX index, with the

exception of a small constant term1. Accordingly, we refer to V IXa
t and V IXb

t as measures of the

average bid and ask prices. Note that the squared VIX index is, up to the dropped constant term,

equal to 1
2(V IXb

t + V IXa
t ). We let V IXm

t denote the daily squared VIX variance series computed

from mid-quotes. All three VIX measures are reported as a percentage variance figures scaled into

monthly units.

1See the CBOE VIX white paper https://cdn.cboe.com/resources/futures/vixwhite.pdf.
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We also use a second data set consisting of SPX options holdings data for firms and retail customers,

distributed by the CBOE. This dataset has previously been used by Pan and Poteshman (2006),

Lakonishok, Lee, Pearson, and Poteshman (2007), Chordia, Kurov, Muravyev, and Subrahmanyam

(2018), and Chen, Joslin, and Ni (2018) among others.

The Option Clearing Corporation (OCC) groups each option transaction into one of three cat-

egories: public customer, firm proprietary trader, and market maker. The customer classification

includes retail and institutional investors (e.g. hedge funds). Firms are broker-dealers that are not

market makers and that trade for their own accounts, or for other firms. The CBOE data set contains

only non-market maker records (Pan and Poteshman, 2006), and subclassifies the public customer

transactions further into small, medium, and large customers. The data categorizes transactions on

whether they comprise new positions, or close out existing positions. In particular, it distinguishes

between OPEN BUY (an opening of a new long position), CLOSE SELL (a sale of an existing long

position), OPEN SELL (a new short position), and CLOSE BUY (buy to cover an existing short

position).

Our raw data set has two dimensions; trading days, t, and unique option contracts i (a unique

contract is defined by the expiration date, the strike price, and whether the option is a put or a call).

We track each unique contract i over its lifespan, that is from the first trading day in our sample

(implicitly assuming that i did not exist before the first recorded trade) to the day before expiration.

Every day, t, within this period, we compute the market maker’s holdings. More precisely, following

Chen et al. (2018), we add the BUY positions and subtract the SELL positions from the previous day’s

holdings for every option contract and every investor type separately. Expiring contracts are nullified.

As in Muravyev (2016), Chordia et al. (2018), and Gârleanu et al. (2009) the market maker takes the

other side of the transaction, and hence her net inventory for contract i on day t, ni,t, is the negative

of the sum of firm and customer holdings. We also compute daily vega and squared vega for every

contract within its lifespan.

[Figure 1 about here.]

The resulting series are shown in Figure 1. The plot shows the number of options held by market

makers, nt, defined as the sum of all ni,t, and the total squared vega of their positions computed as
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nt×vega2t . We use this definition of exposure, rather than nt×vegat, as it corresponds to the relevant

state variable in our model below. As seen, market makers are on average net sellers. This is in line

with the results in Pan and Poteshman (2006), who confirm that between 1990 and 2001 index options

we more actively bought than sold by non-market makers.

Figure 1 further shows that market makers’ inventories gradually became more negative over the

1998 to 2007 period. In a perhaps prophetical and certainly fortunate rebalancing in early 2007,

market makers reduced short positions dramatically. Chordia et al. (2018) note that the market

makers’ trading activity in index options positively predicts market returns. Since large financial

institutions dominate market making, this is consistent with Hendershott, Livdan, and Schürhoff

(2015) who provide empirical evidence suggesting that institutions, unlike retail investors, have an

informational advantage in predicting stock returns.

We further collect several additional financial and economic series. Our risk-free rate series is the

3-month U.S. T-Bill rate, obtained from the FRED FED data base. We rely on the TAQ database to

compute daily close-to-close SPY returns as well as realized variances (RV) from 5-minute intraday

returns2. We are further interested in obtaining a measure for the conditional variance of the VIX. To

obtain an estimate of Vart(△VIXt+1) or equivalently Vart(VIXt+1), we estimate the following GARCH

specification,

VIXt+1 = a+ b(d)VIXt + b(w) 1

5

5∑

j=1

VIXt−j+1 + b(m) 1

22

22∑

j=1

VIXt−j+1 + ωtut (3)

ω2
t+1 = α0 + α1u

2
t + βω2

t (4)

The model for the dynamics of the squared volatility index in (3) is an additive cascade model inspired

by the work of Corsi (2009). The parameters in this model are straightforwardly estimated using

likelihood inference and we omit the details. Our estimate of Vart(VIXt+1) are the filtered ω2
t s.

[Table 1 about here.]

The summary statistics of the data are in Table 1. Three stylized facts are confirmed by the

data. First, asking prices are more volatile than the bids. Table 1 shows that the variance of the

2OptionMetrics data is available from 1996 onwards. We discard the first two years in compiling our data set, since
the observations on the SPY in TAQ are not sufficiently liquid to compute measures (e.g. RV) that rely on high-frequency
intraday returns.
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indices computed from bid quotes is between 71.5% and 96.9% of the variance of the indices obtained

from asks3. Second, market makers’ inventories are negative on average; the sample mean of nt in

Table 1 is -30×104. Lastly, all three spread measures exhibit a strong positive skew. Returns are zero

on average, very volatile, negatively skewed, and - as usual - leptokurtic. All variance series (VIX,

RV, and GARCH-model forecasts) have a strong positive skew and a very high kurtosis. Finally, we

confirm that the risk-free rate has been low throughout our sample period, with a minimum of zero

and a maximum of 6.3% annually.

2.1 Empirical Evidence on Spread Asymmetry

In the following we present reduced form descriptive evidence on option bid-ask spreads.

[Figure 2 about here.]

Figure 2 shows our computed V IXm and V IXb indices on the first trading day of every month,

as well as the VIX-spread V IXa − V IXb. It is clear that the two follow each other very closely in

levels. There’s also an obvious correlation between the level of the VIX-spread and the level of VIX.

[Figure 3 about here.]

Figure 3 shows the average spread in ATM option prices computed from daily data. The upper

panel, which shows the raw time series, displays what appears to be rapid, periodic movements, along

with longer term variation which is related, at least in part, to the level of volatility. The periodic

variation is shown in the bottom graph by plotting the sub-period of 2003 along with end-of-month

and option-maturity indicators. As seen from this plot, there is a clear tendency for the spread to

contract on the last day of the month and to increase on the maturity dates.

[Table 2 about here.]

[Table 3 about here.]

3The lower variability of V IXb relative to V IXa cannot be attributed to the fact that on each date, options with
bids of zero are discarded before the VIX for that day is computed. If instead, we also include bid prices ≤ 0 in the index
computation, we find standard deviations of 41.04 (51.04) for V IXb (V IXa). These numbers are basically the same as
in Table 1.
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Table 2 shows the results from running regressions of the VIX spread, V IXa−V IXb, onto various

explanatory variables. A contemporaneous negative S&P 500 return (“Return”) positively impacts the

spread and vice versa. Not surprisingly, higher levels of realized volatility (“RV level”) are associated

with higher VIX spreads. As already seen in Figure 3, expiration and month-end dummies correlate

significantly with the spread. The regressions also include the variable |Inv×vega2 × RV |, which

measures the aggregate market maker vega position multiplied realized volatility. This variable is

theoretically motivated from our model to be introduced below. As seen, this variable strongly and

significantly impacts the VIX spread.

Table 3 presents the equivalent results of regression of V IXa and V IXb onto the same variables as

in Table 2. The main takeaway here is that asking prices tend to move more than bids in response to

shocks to the explanatory variables. For example, a negative (positive) contemporaneous S&P return

will have a larger positive (negative) impact on asking prices, than bids. The same is true for the

other explanatory variables. To check whether this difference in impacts is significant, we conduct a

Wald test for the equality of the estimated effect of the variable of interest, |Inv×vega2 × RV |, on

V IXa and V IXb. In the first regression specification (column 1 of Table 3) we find a Wald statistic

of 12.7739 and a corresponding p-value of 0.0004 from the χ2(1)-distribution. Similarly, in the fourth

and fifth regression specification (columns 4 and 5 of Table 3) we find Wald statistics of 12.4262 and

12.2179, respectively, with corresponding p-values of 0.0004 and 0.0005. Thus, we reject the equality

of the impact in each case.

To further interpret these estimates, consider the impact of a shock to market makers’ inventory.

If the variable vega2×RV is at its steady state average, and if the absolute value of inventory were to

increase by an amount equal to its unconditional standard deviation, the increase in the VIX squared

spread is 2.9 annualized variance units. Since the average spread is 7.5, this increase represents a

38% increase in spread. At the lower 10th percentile of vega2 × RV the change in the spread is 0.38

in response to a one standard deviation increase in inventory. The comparable number is 6.21 when

evaluated at the 90th percentile of vega2 ×RV .

Another way to study this impact is to imagine that the inventory, in absolute value, were to

increase by an amount equal to the standard deviation of its daily changes. This is a much smaller

quantity than the unconditional standard deviation. Computations then show that the spread would
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increase by 0.51, or 6.8% on average. Both these numbers point to a large, economically significant

impact of inventory on spreads.

3 Model

In the following we derive a simple model that expresses the mark-ups charged by market makers

for buy and sell orders, respectively.

The mark-ups, ǫjt for j = {a, b} are defined as

Cask
t ≡ Ct + ǫat (5)

Cbid
t ≡ Ct − ǫbt . (6)

Thus, if Cask
t is the observed market asking price, Cask

t − ǫat is an estimate of the “true value” of the

option. The true value of the option is unobserved, but by this assumption it is contained within the

bid-ask spread. Since the markups are assumed positive, market makers are unwilling to sell (buy)

at a price below (above) the true value. This is reasonable in options markets given the existence of

hard arbitrage bounds on prices as well as a well-developed theory of option valuation.

Assume that a market maker has a position n̄t = {nt,i} for i = 1, .., Nt in options. Let Pt denote

the prices at the start of a trading period [t, t + 1], taken to be one day. The market value of the

options is then n̄′

tPt and the total change in the value of the positions is n̄′

t(Pt+1 −Pt) over the course

of a day.

Assume further that the option prices are functions of the underlying stock price level, St, and

the VIX index, such that Pt = P (t, St, V IXt). This is equivalent to assuming that the option price

depends on the stock price and its spot variance, say σ2
t , under mild regularity conditions. The total

delta of the market maker’s position is then

δp,t = n̄′

t

∂Pt

∂St
, (7)
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where ∂Pt

∂St
is a vector of partial derivatives (deltas). The vega of the portfolio is

vegap,t = n̄′

t

∂Pt

∂V IXt
. (8)

We assume that St and V IXt are diffusion processes. Then the value of the option portfolio evolves

according to

dVt = µ(·)dt+ δp,tdSt + vegap,tdV IXt, (9)

where µ(·) is a drift term, and dVt, dSt and dV IXt are the infinitesimal increments to the unhedged

options portfolio, underlying stock (or stock index) and VIX index, respectively.

There is no reason for the market maker to take on delta risk, and most do not (see e.g. Jameson

and Wilhelm, 1992, and Christoffersen, Goyenko, Jacobs, and Karoui, 2017). Following Stoikov and

Saglam (2009) among many others, we therefore assume that the position is fully delta hedged. Hence,

the market maker takes an offsetting position −δp,t in stock such that the dSt-term in (9) cancels. The

delta-hedged portfolio value, V H
t , then evolves according to

dV H
t = µ(·)dt+ vegap,tdV IXt. (10)

Instead of modeling bid-ask spreads across an entire spectrum of all possible options contracts,

we simplify the problem and study the average bid-ask spreads on a portfolio of options. Let Ct =

∑
iwi,tPi,t with weights wi,t denote the price of this option portfolio.

Below we derive a model for the bid-ask spread of Ct. If the weights wi,t match the composition of

the VIX index, as in equation (2), we can interpret Ct as a synthetic variance swap (see for example

Eraker and Wu (2017) and references therein).

A market maker trading variance swaps faces a discrete-time profit given approximately by

πt+1 = ntµ+ ntvegavs,t△V IXt+1, (11)

where nt now denotes the number of variance swap contracts the market maker holds. The variance
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of the market maker’s profit is thus

V (nt) := Vart(△πt+1) = nt
2vega2vs,tVart(△V IXt+1), (12)

where vegavs,t represents the vega of a synthetic variance swap.

We assume that option market orders arrive with Poisson intensities that depend on the price, or

the mark-up of the market makers. The greater the mark-ups, the lower the demand, and thus there

are fewer arrivals of market orders. Specifically, we assume

λ(ǫjt ) = Aje
−Djǫ

j
t (13)

for bids and asks, j = {a, b}. The parameters Aj and Dj are assumed to be positive such that the

arrival intensities are positive, and negatively dependent upon the size of the mark-ups. Positive

Dj ’s create a standard downward sloping “demand function” where arrivals increase as ǫt decreases.

The market maker controls her inventory probabilistically: For example, if she has a large negative

inventory, she might increase ǫat so as to deter additional sell orders and simultaneously decrease ǫbt , so

as to attract buy orders. We assume that zero is a lower bound for ǫt. That is, the market maker will

not post a limit buy (limit sell) above (below) the “true” price Ct. We can weaken this assumption by

assuming that there exists a lower no-arbitrage bound on the value of the option, say C lb
t ≤ Ct. For

example, the C lb
t could be the intrinsic value, or the market equivalent value of a close substitute, for

example options on another closely related index, or a VIX futures position. The ǫt > 0 assumption

is also made in Stoikov and Saglam (2009) and Chan and Chung (2012).

Consider a market maker who posts bids and asks for x variance swap contracts. If the market

maker’s bid is hit by a market order his inventory becomes nt + x. The conditional variance is

Vart(ǫ
a
t , ǫ

b
t) = λ(ǫbt)V (nt + x) +

(
1− λ(ǫbt)

)
V (nt) + λ(ǫat )V (nt − x) + (1− λ(ǫat ))V (nt). (14)

The model features a monopolistic market maker, which is a realistic assumption when studying

SPX options, since they “have only a single market maker who provides continuous quotes” (Chordia

et al., 2018). We assume that the market maker is risk-averse and she determines her mark-ups, ǫat
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and ǫbt , so as to maximize a quadratic utility function

max
ǫat ,ǫ

b
t

λ(ǫbt)ǫ
b
tx+ λ(ǫat )ǫ

a
t x− γVart(ǫ

a
t , ǫ

b
t), (15)

where γ is a risk aversion coefficient. The terms λ(ǫjt )ǫ
j
tx represent the expected profit from a single

purchase or sale. The market clears through market orders executed at the market maker’s bid or ask,

Cbid
t and Cask

t in (5) -(6).

Proposition 1. The optimal mark-ups are given by

ǫat = max

(
1

Da
+ γ (−2nt + x) vega2vs,tVart(△VIXt+1), 0

)
(16)

ǫbt = max

(
1

Db
+ γ (2nt + x) vega2vs,tVart(△VIXt+1), 0

)
(17)

4 Estimation and Inference in the Structural Model

Our model is essentially one that applies to a single asset. In order to apply it to options we

compute aggregate options data as described in Section 2. We compare these aggregate quantities

across all strikes and maturities to aggregate bid-ask spreads as measured by the difference in VIX

computed from asks and bids.

4.1 Identification

Our estimation method is straightforward. Let Ztheory
t (Θ) = ǫat + ǫbt denote the theoretical spread

and let Zdata
t denote some measure of observed spread in the data. We assume that

Zdata
t − Ztheory

t (Θ) ∼ N(0, s2). (18)

Empirically, the distribution of spreads is asymmetric and has fat tails, which may translate to the

residuals Zdata
t −Ztheory

t (Θ), as well. For robustness, we thus also consider the alternative assumption

Zdata
t − Ztheory

t (Θ) ∼ GH(0, s2, υ, ζ, ρ), (19)

12



where GH is the Generalized Hyperbolic distribution with the parameterization used in Bensäıda and

Slim (2016). This parameterization has the advantage that the first two parameters of the distribution

determine the mean and variance, while remaining three values determine the tails and skewness of the

distribution. With the mean of the distribution set to zero, it can be used to specify a non-Gaussian

likelihood function for the non-linear regression implied by (19). The parameter s2 is interpretable as

a residual variance, comparable to the specification with normal errors (18).

The distributional assumptions in (18) or (19) allow us to specify a likelihood function, L(Θ). To

facilitate numerical stability, we estimate the re-parameterized vectors Θ(N) = {D−1
a , D−1

b , γ, x, s}

and Θ(GH) = {D−1
a , D−1

b , γ, x, s, υ, ζ, ρ}. That is, we estimate the reciprocal of the demand elasticity

parameters, Da and Db.

There are a number of other minor details to note in regards to the parameter estimation and

identification. First, our estimator does not allow us to identify the average arrivals, as determined by

the coefficients, Aa and Ab. On the other hand, the parameters D−1
a , D−1

b , γ and x, are identified up to

a constant. To see this, note that if Θ̂(N) =
{
D̂−1

a , D̂−1
b , γ̂, x̂, ŝ

}
is an estimator of Θ(N) then rescaling

the data ñt = κnt by a positive constant κ, leads to the MLE Θ̃(N) =
{

1
κD̂

−1
a , 1

κD̂
−1
b , 1

κ γ̂,
1
κ x̂, ŝ

}
.

Note that ŝ is unaffected by rescaling, implying that the R2 = 1− ŝ2/Var(Zdata
t ) is unaffected as well.

This is, of course, standard for linear regression models. Unlike linear regressions, however, parameter

estimates in our model are not invariant to the addition of a constant because the identification of Da

and Db depends on the sign of nt.

It should further be noted that the parameters D−1
a and D−1

b are identified from the changing

sign of inventory4. If observed inventory were negative throughout, we would not be able to identify

D−1
b ; conversely if nt > 0 for all t, D−1

a would not be identifiable. Fortunately, we observe periods

with positive as well as negative inventory in our data, although for the majority of our sample period

market maker inventories are negative.

Finally, rather than estimating the expected order size x from spread data, we set it equal to the

average order size x̄ = 1
T

∑
t |nt − nt−1|. With this, we are able to interpret the estimate as an actual

average order size, rather than just a free parameter.

4See the breakpoints shown in Figure 9 in Appendix 2
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4.2 Parameter Estimates

[Table 4 about here.]

Table 4 reports parameter estimates for the the equilibrium model. We report posterior means

and standard deviations to summarize the Bayesian analysis, and maximum likelihood point estimates.

The two methods give almost identical numerical results, indicating that the posterior distributions

are relatively symmetrically distributed with modes close to the MLE. The parameter estimates for

Equations (18) and (19) are also quite close. The bid-ask asymmetry is marginally more pronounced,

the risk aversion is somewhat lower, and the error variance elevated when errors are not Gaussian.

The in-sample fit, as measured by R2, of the predicted spread resulting from Equation (19) is slightly

lower than the corresponding fit from (18), which is why we opt to work with the latter estimates

henceforth.

[Figure 4 about here.]

The most interesting aspect of the parameter estimates is the large difference in the elasticity

parameters D−1
a and D−1

b . To see what these parameter estimates imply, Figure 4 plots the estimated

ask and bid mark-ups. As seen, the market makers’ mark-up is much greater on the asking side. In

fact, the mark-ups for the bids are only non-zero during the height of the financial crisis, and zero

otherwise. This implies that, for the most part, market makers are willing to buy at the “true” price

with no mark-up. To sell, they require a premium that is time varying, especially during stress periods.

[Figure 5 about here.]

The implication that the average ask mark-up, ǫat , exceeds the average of ǫbt suggests that that the

midpoint, 1
2(C

ask
t +Cbid

t ), is upwardly biased for the true price, Ct. In fact, the model implies that the

midpoint is never an unbiased estimate of the true value of the option, since ǫat 6= ǫbt at every point in

the sample. Conditionally, the bias in the midpoints is substantial, as large as half the spread itself

for most t. The results also imply that the second moment of ǫat is greater than the variance of ǫbt ,

which means that there are economic shocks that asymmetrically impact asking prices.

Our model provides a reasonable, but not perfect, fit to the data and the R2 is reported to be

39% in Table 4. Figure 5 plots the data vs. the theoretical spread based on the MLE estimates. The
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model captures the increases in the spread observed during stress periods, as for example during the

financial crisis, reasonably well. There are, however, some periods during which the model fails to

capture the low observed spreads. During the late nineties and early two-thousands, the model does

well in capturing the average spreads. For a long stretch in the mid two-thousands and also after mid

2012, the model produces a spread that is too large. It is easy to see where this is coming from: In the

absence of a large positive or negative inventory, the model produces a spread that is essentially equal

to D−1
a . The model hits this lower bound whenever market maker inventory falls within a range, as

seen in Figure 9.

As is necessarily the case with any model, our theoretical model that describes spreads as a function

of market maker’s inventory, price sensitivity to changes in the volatility of the underlying asset, and

the conditional variance of the spot variance, is an abstraction of reality. Other drivers of spread

asymmetries that have been suggested in the extant literature are, for instance, the risk of trading

with traders that have an informational advantage, or the compensation required by liquidity providers

for facing possibly sharp changes in asset prices or tail risk (see Weller, 2019). Standard errors of model

estimates account for potentially omitted factors, in the sense that they increase if the variability of

the unexplained part of the model increases. Thus, Figures 4 and 5 report confidence intervals that

are based on these standard errors5, in an attempt to caution against uncertainty. Throughout the

remainder of this paper, we will report standard errors for our model-implied measures that are based

on the estimation in this section as a reminder to the reader that there is statistically uncertainty.

5 Impact on OIRMs

The model in the previous section suggests that option midpoints are biased estimates for the

“true” price, which in turn seems to lie closer to the bid quote. We now examine how this bias

impacts OIRMs such as VIX, VRP, FI, which is an option implied jump-risk measure of Bollerslev

et al. (2015), and on the SKEW index from the Chicago Board of Options Exchange, as well as the

corresponding SRP. These risk measures are of interest for finance academics and practitioners because

they are believed to capture risk or risk aversion in financial markets.

5These standard errors, as well as the ones reported for bias-corrected OIRMs below, are computed by finite differences
and the Delta Method.
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Relying on our MLE model-estimation results for Equation (18), we can correct OIRMs for the

asymmetry in spreads. Specifically, we compute the OIRMs from Ĉt, i.e. our estimate for the “true

value” or “theoretical price” of the option. We refer to these OIRMs as bias-corrected prices, denoted

(·)BC . To obtain the bias-corrected prices, we merge the OptionMetrics database with the inventory

database. Only contracts that are listed in both data sets are retained6. We then use the parameter

estimates from Section 4 to calculate the bias-corrected option price as

Ĉt = Cbid
t + ǫ̂bt . (20)

Cbid
t is the observed bid quote and ǫ̂bt is a function of the parameter estimates, the option’s inventory

and vega, and the conditional variance of VIX (see Eq. (16)-(17)). As an alternative, we could have

computed bias-corrected prices as Ĉt = Cask
t − ǫ̂at , which has the disadvantage that prices can become

negative. The correlation between the two bias-corrected prices is 0.99, which suggests that it does

not impact results largely, which alternative we chose.

5.1 VIX and Variance Risk Premium

We compute our own VIX series based on midpoints of the bid and the ask, V IXm, following

the methodology for computing the CBOE VIX index. The VIX, which is a proxy for the standard

deviation of the S&P 500 return distribution, is thus subject to market events that affect the center

of the distribution rather than the far tails. Table 5 presents summary statistics and shows that our

series is basically identical to the index published by the CBOE. Then we apply the same methodology

to obtain V IXBC .

The average daily VIX computed from Ĉt is 43.243, and the average of V IXm is 44.842, measured

as a percentage variance scaled into monthly units. These numbers correspond to 22.937 and 23.358 in

the more commonly reported annualized percentage standard deviation units. To test whether these

two values are statistically different, we can rely on the standard error of the former estimate, which is

obtained from the model estimation in Section 4. The average of V IXm is not contained in the 90%

and the 95% confidence interval of the average of V IXBC , yet it lies within the 99% confidence interval.

6The process of merging the two data sets reduces the number of option contracts from 5,588,744 (in the original
OptionMetrics database) to 4,383,052.

16



As second approach to testing the equality of the OIRM-moments, we re-estimate the first moment

by nonlinear GMM, restricting the averages of the two series, V IXm and V IXBC to be identical7.

The resulting GMM J-statistic has a χ2(1) distribution if the restriction holds. As can be seen in

Table 5, we strongly reject the equality of means. Thus, the mean of the VIX Index is overestimated

when using option midpoints by 3.698% in monthly variance units or 1.832% in volatility units. Put

differently, selling short-term volatility at a 1.832% premium every month would seemingly imply an

additional 24.341% return premium in expectation over one year. This is a substantial numerical

difference, and it does mean that in reality investors perceive the risk associated with the center of the

return distribution as less severe. This finding my also be interpreted as saying that investors are less

averse to risk on average. This interpretation of the results draws on Whaley’s (2000) description of

the VIX as investor fear gauge, which makes it a popular indicator of aggregate risk aversion according

to Bekaert, Hoerova, and Duca (2013).

Higher-order moments of V IXBC are smaller than the corresponding moments of V IXm, as well.

The sample standard deviations over the entire time period are 46.056 for V IXm and 41.872 for

V IXBC . The model-implied 99%-confidence intervals for the standard deviation of V IXBC do not

contain the corresponding estimate for V IXm, suggesting a rejection of equality of second moments.

Yet, if we once again rely on the J-statistic instead, this time having estimated the restricted second

moments by GMM, we fail to reject a common variance. Similarly, V IXBC is less skewed and less

leptokurtic than V IXm. Both differences in skewness and kurtosis are strongly significant based on

the model-implied standard errors, but only the difference in the skewness is marginally significant

based on the J-statistic. The strong persistence measured by the first-order autocorrelation coefficient,

AR(1), is the same for the two series.

[Table 5 about here.]

From the two VIX series, we can compute the VRP of Bollerslev et al. (2009) by subtracting

the realized variance over the past 22 days (including the overnight squared return). We denote the

resulting series by V RPm and V RPBC , and report them as percentage variances in monthly units.

Table 5 presents the corresponding summary statistics. The average daily V RPBC is 6.299 (8.754 in

7The long-run variance covariance matrix of the moment conditions is estimated as a HAC estimator, relying on the
Bartlett kernel, and using Newey-Wests automatic lag selection criterion.
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annual percentage volatility units), whereas the average of V RPm is larger, equal to 7.890 (9.798 in

annual percentage volatility units). If we rely on the same tests for the equality of means as above

for VRP, we find a J-statistic of 14.038 and a corresponding p-value of 0.000. We clearly reject that

V RPm and V RPBC have the same mean. Also, the model-implied standard errors suggest that the

two averages are numerically different, at least with 90% confidence. In fact, numerically the former

exceeds the latter by more than 25%. Thus, if we view VRP as an estimate for the actual variance

premium in the market, then the on average positive payoff for the seller of a variance swap contract

is substantially smaller than the measure based on midpoints would suggest.

In contrast, the sample standard deviations of the two series are almost the same: 23.173 and

24.586 for V RPm and V RPBC , respectively, and the GMM-test fails to reject the equality. Thus,

while the bias-correction does not affect the variability of VRP much, it does produce a series V RPBC

that is more negatively skewed (-4.649) than V RPm (-3.431), strongly significantly so according to

the GMM-test as well as model-implied inference.

[Figure 6 about here.]

5.2 Fear Index

While the differences in VIX and VRP computed from midpoints and bias-corrected quotes are

already very sizable, they are dramatic for OIRM series that are highly dependent on OTM option

prices. One such example is the Fear Index (FI).

Bollerslev and Todorov (2011) show that the (ex-ante negative) VRP can be decomposed into two

components: a compensation for bearing continuous or diffusive risk, and a premium for jump risk.

Bollerslev et al. (2015) suggest that the known predictability of returns from VRP is mostly driven

by the latter jump-risk factor. In doing so, they construct the FI, defined as the left-jump premium

(LJP ) minus the right-jump premium (RJP ). To align the concept of a premium with our definition

of VRP in the previous subsection and SRP in the following subsection, we depart from Bollerslev

et al. (2015) and specify a premium as the expectation under the Q-measure minus the expectations

under the P-measure. Following the derivations in Bollerslev and Todorov (2011) and Bollerslev et
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al. (2015), it holds that

FI ≡ LJPt,τ −RJPt,τ ≈ 1

τ
E
Q
t (LJV

Q
t,τ )−

1

τ
E
Q
t (RJV Q

t,τ ), (21)

where RJV (LJV ) is the left (right) jump variation over horizon τ . The index is positive, which

follows from the empirical fact that LJV is bigger than RJV for all our observations8.

The FI is computed weekly9. We report the corresponding summary statistics in Table 5. As can

be seen, our estimates for the computation of FIm, that is the fear index computed from mid-quotes,

are reasonably close to the ones in Bollerslev et al. (2015) for their 1996-2013 sample. The only visible

differences are in the RJV estimates, but this is negligible since the right tail has next to no impact

in the computation of FI10.

To gauge the impact of the bid-ask asymmetry on the computation of the Bollerslev and Todorov

(2011) FI, we further compute a version of the index based on bias-corrected quotes and refer to it

as FIBC . That is, we re-compute the tail-shape parameters and the jump variations using Ĉt as

input to obtain FIBC . Table 5 presents summary statistics of the resulting time series. As we can

see, there is a large difference in the behavior of the fear index based on mid-quotes and Ĉt. The

average weekly FI computed from Ĉt is 2.914, and the averages of FIm is 6.113. On average, FIm

thus overstates fear by 109.8% when measured in annualized percentage variance units. The sample

standard deviations are 6.863 for FIm and 3.856 for FIBC . The difference in both, first and second

moment, are strongly significant according to the GMM J-test and the model-implied confidence

intervals. Thus, the unconditional mean and standard deviation of FIm are both almost twice the

magnitude of FIBC . FIBC is also less skewed, less leptokurtic, and has less persistence than FIm,

where the difference in skewness and the AR(1) parameter are marginally significant based on the

GMM-test. In contrast, the model-implied standard errors suggest that we reject the equality of these

8Since we reversed the definition of a premium, our FI will have the opposite sign of the index in Bollerslev and
Todorov (2011) and Bollerslev et al. (2015). Furthermore, in contrast to the original estimates for the FI in Bollerslev
and Todorov (2011), Bollerslev et al. (2015) allow for the shape of the jump tails to be time varying. We follow their
estimation approach.

9The estimation methodology for FI requires the choice of two tuning parameters. We opt for the same parameters
as in Bollerslev et al. (2015). Firstly, to compute the left (right) jump tail parameters we only use put (call) options with
log-moneyness less than 2.5 (larger than 1) × the maturity-normalized implied volatility. Secondly, to identify “large”
jumps, we use a time-varying cutoff point that is equal to 6.8686 × the maturity-normalized implied volatility.

10In fact, “[. . .] for the aggregate market portfolio the magnitude of the risk-neutral left jump tail dwarfs that of the
right jump tail, so that empirically LJPt,τ − RJPt,τ is approximately equal to the Q expectation of the negative left
jump variation only.” (Bollerslev et al., 2015)
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higher-order moments at a 99% confidence level.

Figure 7 plots the time series and reveals the time-series sensitivity to the asymmetry in the bids

and asks. The difference is enormous. The midquote and bias-corrected series are also not very highly

correlated, with a correlation coefficient of 0.725 (with a model-implied standard error of 0.002). In

conclusion, the fear of an investor in the aggregate market portfolio of rare unpredictable jump events

in returns is much more moderate when relying on bias-corrected prices.

[Figure 7 about here.]

In Table 6, we regress FIm on measures of bid-ask spreads. The first variables are the VIX and

the VIX spread (“Spread”) defined as V IXa − V IXb. As seen, these measures explains about 29% of

the variation in FI. We also include other spread measures, including the fitted spread ǫat + ǫbt from our

model, and the individual estimated mark-ups ǫat and ǫbt . The table reveals that the various spread

measures significantly correlate with the Fear Index computed from midpoints, at least for subsets of

the regressions. Moreover, the the dramatic difference in FIm and FIBC shown in Figure 7 suggests

that the FI computation is very sensitive to the bid-ask spreads of OTM puts and calls.

[Table 6 about here.]

5.3 Implied Skewness

The CBOE SKEW Index is a measure for the perceived tail risk in the aggregate market, specifically

in the S&P 500 market11. Thus, whereas the VIX is heavily impacted by the center of the return

distribution, the SKEW explicitly considers the left tail of the return distribution. Tail risk, as defined

by the CBOE, is the risk that large negative returns in excess of two standard deviations can occur.

Several stock market crashes in the history of the S&P 500 suggest that this risk is substantial.

The SKEW is an option-implied risk measure. More precisely, it is computed from OTM options

on the SPX that have 30 days time to maturity. The Index, SKEW , is typically larger than 100.

If its value is exactly 100, then the risk-neutral expected distribution of returns on the S&P 500 is

log-normal. That is, the conditional probability under the equivalent martingale measure of a large

11See the CBOE SKEW white paper https://cdn.cboe.com/resources/indices/documents/

SKEWwhitepaperjan2011.pdf.
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negative return is very small. As SKEW increases above the mark of 100, the expected risk of a tail

event within the next month increases.

We compute the index from mid-quotes, SKEWm, on a daily basis, following the methodology

outlined in CBOE’s SKEW White Paper. By the same approach, we also compute SKEWBC , the

index based on bias-corrected prices Ĉt. Table 5 presents summary statistics of the two time series.

When we compute the index from mid-quotes it matches the original CBOE SKEW Index very closely,

suggesting that we can accurately replicate the index. As we can further see, there is a substantial

difference in the properties of the SKEW based on midpoints and bias-corrected prices. As opposed

to our findings for the VIX, however, the moments of SKEWBC are all more extreme than the

corresponding moments of SKEWm. The unconditional means are 118.585 of SKEWm vs. 149.907

of SKEWBC , and the difference is strongly significant according to the J-statistics and the 99%

model-implied confidence intervals. More strikingly, the standard deviation of SKEWm is only about

9% of the magnitude of SKEWBC . Again, the difference between the moments is strongly significant

as suggested by both statistical inference approaches. SKEWBC is more skewed and has a much

higher kurtosis than SKEWm, and we reject the equality of the moments at a 1% significance level

with the GMM-test as well as the model-implied confidence intervals. Lastly, SKEWBC is even

marginally more persistent that SKEWm, but this difference is not significant.

The dissimilarity of the SKEWBC and SKEWm series over time is obvious. The sample corre-

lation between the two skewness indices is only 0.35, with a model implied standard error of 0.006,

again suggesting that the series are vastly different. Thus, the probability of outlier returns relative

to a log-normal distribution is substantially larger on average than SKEWm would suggest, and also

more volatile. Perceived tail risk, further, is positively skewed, strongly leptokurtic, and persistent.

Analogously to the previous section, we regress SKEWm on measures of bid-ask spreads. The

results are presented in Table 7. When regressing the SKEW computed from midpoints on the VIX

and V IXa − V IXb (“Spread”), we find that these explain roughly 10% of the variation in SKEW.

When using alternative proxies for the spread, such as the fitted spread ǫat +ǫbt from our model, and the

individual estimated mark-ups ǫat and ǫbt , we find that these also correlate significantly with SKEWm.

In short, bid-ask spreads seem to impact our OIRM computed from midpoints.

[Table 7 about here.]
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Next, we compute the skewness risk premium, SRP. SRP is assumed to be a proxy for the expected

return required by an investor to compensate her for the uncertainty in the third moment of the return

distribution. To that end, we obtain an estimate for the realized skewness over the last month. More

precisely, we compute our measure as

RSKEW ≡
√
22× 78

∑21
i=0

∑78
j=1 r

3
t−i,j(∑21

i=0

∑78
j=1 r

2
t−i,j

)3/2
,

where rt,j denotes that jth 5-minute log return on day t (including the overnight return). This measure

is similar to Amaya, Christoffersen, Jacobs, and Vasquez (2015). The skewness premium is then given

by SRP j = 1
10(100− SKEW j)−RSKEW , for j = {m,BC}.

The average daily SRP computed from Ĉt is -5.255, whereas the average of SRPm is much closer

to zero, equal to -2.114. The GMM J-statistic for the test of equality of means is 367.550 and thus

lies far in the rejection region of a χ2(1) distribution. Similarly, the model-implied 99% confidence

interval for the sample mean of SRPBC of [-6.343,-4.168] does not include the corresponding estimated

moment for SRPm. A plausible scenario is that mid-quotes and bias-corrected option quotes imply

different vol-of-vol. In this case, the increase in the average SRPBC relative to SRPm is consistent

with previous findings and theoretical equilibrium models. Within a long-run risk-type model in

the style of Bansal and Yaron (2004), Sasaki (2016) describes SRP as a linear function of stochastic

intensity of jumps in the long-run risk factor and the vol-of-vol of the consumption growth rate,

where the former has a negative impact and the effect of the latter depends on the magnitude of the

correlation between intensity and vol-of-vol, and the risk aversion. Similarly, VRP is assumed to be

linear in the same two factors, loading positively on both. Thus, if the variance of variance, i.e. the

fourth conditional moment, happens to be lower in bias-corrected prices on average, we would expect

E(V RPm) > E(V RPBC) and E(SRPm) > E(SRPBC) (if risk aversion is large and simultaneously

the correlation between the two factors is negative; see e.g. Figures 2-5 in Sasaki, 2016), which is

exactly what we find in the data12.

[Figure 8 about here.]

12Note that the vol-of-vol likely depends on the OTM options that also affect the FI. If the relation between FI and
the fourth conditional moment is positive, then an excessive vol-of-vol of mid-quotes would also be consistent with our
empirical finding that E(FIm) > E(FIBC) in the data
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In line with our finding for the SKEW , we find that SRPBC also has a higher standard deviation

(6.819 vs. 1.787) and a slightly larger AR(1) coefficient (0.929 vs. 0.922) than SRPm, but only the

former difference is strongly significant according to both types of statistical inference procedures

that we rely on. The greater negative skewness (-3.100 vs. -0.258) that SRPBC exhibits is strongly

significant with the p-value from the J-test equal to 1.299×10−4 and model-implied 99% confidence

interval of [-4.164,-2.054]. SRPBC also has a higher kurtosis (15.865 vs. 7.669) relative to SRPm, and

GMM-inference suggests that this difference is significant at a 10% and 5% level, but not at the 1%

level. Model-implied inference leads to the same conclusion.

It is striking that the SKEW as well as SRP are so much more disperse, have a substantially

higher probability for extreme tail events (right tail for SKEW and left tail for SRP ), and are

prone to more outliers when the measures are based on bias-corrected prices. We gather from these

results that there is a high degree of uncertainty about the perceived tail risk and the associated

risk premium in the market, and that it is perhaps extremely difficult to pin down this risk with the

SKEW measure suggested by the CBOE and SRP . Figure 8 supports this conclusion. It plots a very

volatile series SRPBC , but it also shows exceptionally wide model-implied confidence intervals that

confirm, once more, the inherent ambiguity in extracting the expected compensation for perceived tail

risk. Interestingly, in Figure 8 SRPBC and SRPBC exhibit rather similar dynamics and levels during

crisis periods, such as the dot-com bubble burst or the Financial Crisis, whereas the differences are

vast mostly during tranquil market periods. The confidence intervals are also narrower in turbulent

periods. Thus, the two measures pricing perceived tail risk mostly disagree during times when the

market does not actually have a long left tail.

5.4 Implications for Option Traders

It is well known that SPX options, especially puts, carry large negative risk premia (Coval and

Shumway, 2001, Bondarenko, 2003). Accordingly, buyers of the VIX (squared) portfolio in Equation

(1) can be expected to lose money. To get a sense of what our findings imply for option traders, we

examine how much money they would lose with such an investment and how the corresponding premia

are affected by bid-ask spreads next.

To investigate the returns to the VIX note that Neuberger (1994) (see also Martin, 2013 and
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Heston and Li, 2020) show that the VIX represents a portfolio of SPX options that if held to maturity

τ will pay

payt = −2 ln

(
Sτ

St(1 + rf )τ−t

)
+ 2

(
Sτ

St(1 + rf )τ−t
− 1

)
, (22)

where rf is the risk-free rate and St is the SPX price. This is an “idealized payoff” as it represents the

payoff in the case that the investors can trade a continuum of strikes. The return to this investment is

given by retjt =
payt−V IXj

t

V IXj
t

for j = {a,m, b,BC}. Given the overlapping nature of the observations on

St and the well-known associated problems these present for standard econometric inference, we rely

on bootstrap-based inference. To accommodate the temporal dependence in the overlapping returns

as well a time-varying variance, we resort to the wild tapered block bootstrap of Hounyo (2014) with

block size 22 days.

[Table 8 about here.]

In Table 8 we compute the average returns and the standard deviation (monthly) to the VIX

portfolio using various measures of VIX and the idealized payoff in (22) as the terminal payoff to the

strategy. In line with the extant literature (see e.g. Eraker and Wu, 2017), we find that the return to

such an investment is negative. The table shows that the negative rate of return to the VIX portfolio

is extremely large at -42% per month for a long investor who buys the portfolio at the bias-corrected

prices. This investor would have realized an annualized Sharpe ratio of -1.33. Assuming that this

trader can transact at the prevailing midpoint instead gives a Sharpe ratio of -1.47. These numbers

are very sizable, yet largely consistent with the existing literature on returns to options writers (see

for example Coval and Shumway, 2001, and Bondarenko, 2003).

It is interesting to note that the difference in the annualized Sharpe ratio between midpoint-

based and bias-corrected computations is as large as 0.13. The investment strategy based on V IXm

presumably increases the return loss by a point estimate of approximately 1.7% on average per month

relative to an investment in the V IXBC-portfolio, because the investor is “paying” for the negative

market-maker inventory during the same period (see Figure 1), who in response demands a large

positive ask mark-up without doing much to the bid mark-up (see Figure 4) thereby driving up the

spread. Thus, when investing in the VIX computed from mid-quotes, the investor is exposing herself

to the market-maker inventory risk.
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Lastly, Table 8 also summarizes the idealized return if it were possible to invest in the VIX

computed from bid and ask quotes, reta and retb. The average return of an investment in V IXb

is a very low -39% per month, yet the average return when investing in the VIX based on ask quotes is

even lower, equal to -48% monthly. Even more notable is the difference in the Sharpe ratios, suggesting

that the risk-adjusted return based on bids exceeds the one based on asks by an annualized 0.55. The

90% confidence interval for the Sharpe ratio of retb of [−1.70,−0.75] does not include the Sharpe-ratio

point estimate for reta of -1.74. Once again, this investment example confirms that bid-ask spreads

are enormous in the SPX options market.

6 Concluding Remarks

This paper does three things. First, we document several systemic features of bid-ask spreads

in options. Notably, asking prices appear more volatile and sensitive to exogenous shocks than bid

prices. Bid-ask spreads depend systematically on market factors such as the level of volatility itself.

This mechanically implies that OIRMs computed from midpoints are impacted by the spread. This

impact is sizable for the VIX, but it is rather enormous for OIRMs that rely heavily on OTM options

prices, such as the SKEW and Fear Indices. This evidence adds to the literature on problems relating

to the computation and interpretation of the VIX. Jiang and Tian (2017) analyze a host of problems

relating to the implicit discretization of the state-price density in the computation of the VIX index.

While the discretization itself gives a coarse approximation, the reliance on truncation points also

contributes to errors (see Andersen, Bondarenko, and Gonzalez-Perez (2011) for a discussion). Griffin

and Shams (2018) document volume spikes in OTM options surrounding settlement dates for VIX

futures and options, suggesting that traders use inexpensive OTM SPX options to manipulate VIX

derivatives’ payoffs.

Second, we derive a simple model where market maker inventory matters in the determination

of spreads. We fit this model to the data and find that it replicates the asymmetric nature of the

variation in asking prices, relative to bids. Specifically, it generates asking prices that are more volatile

than bids, and generally more responsive to exogenous shocks whenever market makers have negative

inventory, and vice versa. Since market makers have historically been sellers of options, our model
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implies that they would have charged a larger mark-up to meet buyer demand than to meet selling

demand. In this way, our model is consistent with observed data. Our model differs from other

demand-based option pricing models in that we focus on modeling the asymmetry in bid and ask

prices. This is crucial in understanding the impact of the spread on OIRMs.

Third, we document that the asymmetry in bid-ask spreads affects popular OIRMs. OIRMs

that rely heavily on out-of-the money options, such as measures for higher-order conditional return

moments, are particularly biased. The differences in the means and variances of the Fear Index and

the SKEW Index when computed from bias-corrected prices and midpoints are particularly large and

strongly statistically significant. We also find that the VIX and the VRP, which approximate investors’

fear of market events impacting the center of the return distribution and the corresponding risk

premium, are overestimated when computed from midpoints. The same is true for the risk premium

for market events affected by unpredictable return jumps, as measured by the Fear Index. Conversely,

the SKEW, which is designed to measure investors’ fear of market events impacting the tails of the

return distribution, is underestimated when based on midpoints, and the associated skewness risk

premium is too close to zero.

The large bid-ask spreads in SPX options represent a challenge to the computation and interpreta-

tion of OIRMs. Quoted spreads are much lower in SPY options, however. For example, on September

27, 2017, the average spread of the two closest ATM call options with a one-month maturity was

about 4.4% for SPX vs. less than 1% for equivalent SPY options. This difference in spreads in part

motivates the introduction of a new volatility index, SPIKES13, which is computed from SPY options

and essentially relies on the same formula as the CBOE’s VIX. The shorter availability of SPY relative

to SPX options and the American exercise feature, which makes it optimal to exercise calls prior to

lump-sum SPY dividends, complicate the computation of SPIKES and, more generally, OIRMs that

are based on SPY options. We leave these topics as possible avenues of future research.

13See https://www.miaxoptions.com/spikes/overview.
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Appendix 1 Proofs

Proof of Proposition 1. We get the following first-order condition for ǫat :

λ(ǫat )x+ ǫat λ
′(ǫat )x− γλ′(ǫat ) (V (nt − x)− V (nt)) (23)

or

1−Daǫ
a
t + γ

1

x
Da [V (nt − x)− V (nt)] = 0 (24)

ǫat =
1

Da
+ γ

1

x
(V (nt − x)− V (nt)) (25)

and similarly

ǫbt =
1

Db
+ γ

1

x
(V (nt + x)− V (nt)) (26)

where

V (nt − x)− V (nt) = (nt − x)2vega2vs,tVart(△V IXt)− n2
t vega

2
vs,tVart(△V IXt+1) (27)

=
[
(nt − x)2 − n2

t

]
vega2vs,tVart(△V IXt+1) (28)

= x [−2nt + x] vega2vs,tVart(△V IXt+1) (29)

giving the result.

Appendix 2 Structural Model Implications

In the following, we discuss some features of the structural model proposed in Section 3. Figure 9

depicts the theoretical spread, Cask
t −Cbid

t = ǫat +ǫbt , as a function of nt, keeping other factors constant.

As seen, the spread is piecewise linear in nt, with breakpoints determined by n+ = (2γDaYt)
−1 + 1

2x

and n− = −(2γDbYt)
−1 − 1

2x for Yt = vega2vs,tVart(△V IXt). The spread attains a minimum for

nt ∈ [n−, n+]. Note that nt = 0 ∈ [n−, n+], and hence the spread is minimized for the case of zero
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inventory. This follows because the market maker can not do better than having no inventory. The

spread increases with a factor 2γYt when the inventory exceeds n+ or is lower than n−. This symmetry

is due to the quadratic utility and would likely be slightly asymmetric if the utility function had a

convexity that depended on nt, instead.

[Figure 9 about here.]

The equilibrium expression for the mark-ups in Equations (16) and (17) reveal that if nt is positive

and large, ǫat is likely to hit its lower bound of zero while at the same time, ǫbt is large. This attracts

buy orders and deters sell orders, implying that the market maker’s inventory will tend towards zero,

i.e. her desired holding. Conversely, when the inventory is negative, ǫbt is small and ǫat is large. Note

that the possibility that (Ab, Db) and (Aa, Da) differ implies that arrival intensities of buy and sell

orders differ, both conditionally and unconditionally. For example, if Da = Db and Ab > Aa (the

arrival intensity of buy orders exceeds that of sell orders), the market maker will be left with an

equilibrium steady-state inventory that is negative, E(nt) < 0. A simulated inventory series where

E(nt) < 0 is shown in the top panel of Figure 10.

[Figure 10 about here.]

The middle plot of Figure 10 shows the mark-ups. As seen, ǫat is larger than ǫbt most of the time.

ǫat is also more volatile than ǫbt and has a higher right skewness. The behavior of the bid-ask spread,

Cask
t − Cbid

t = ǫat + ǫbt , is shown in the bottom panel of Figure 10. It is highly right skewed and

persistent.

Appendix 3 The Generalized Hyperbolic Distribution

We provide a brief discussion of the Generalized Hyperbolic (GH) distribution. Proposed by

Bardorff-Nielsen (1978), the GH is an extremely general distribution with continuous support on the

real line. A number of distributions obtain as special cases, including the normal, Laplace, skewed

Laplace, skewed normal, Student-t, skewed Student-t, variance gamma, gamma, inverse gamma, ex-

ponential, hyperbolic and normal inverse Gaussian. A full discussion of the parametric restrictions

that yield these special cases can be found in Bensäıda and Slim (2016).
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We employ a five-parameter version suggested in Bensäıda and Slim (2016), GH(µ, s2, υ, ζ, ρ),

where the first two parameters are the mean and variance of the distribution. This has the advantage

that it can readily be used to ensure that the residual term in (19) has mean zero. The parameters

υ ⊆ R, ζ ⊆ R+, |ρ| < 1 jointly determine the kurtosis and skewness of the distribution.

[Figure 11 about here.]

Figure 11 demonstrates the impact of changing parameter values in the GH distribution. We

plot the GH density for different values of each parameter while keeping two parameters fixed at

approximately the estimated values in Table 4. We see that both υ and ζ determine the shape of the

distribution. ρ determines the skewness in the sense that if ρ < 0 the distribution is left skewed. A

large value of ζ gives a skewed normal, or normal distribution if ρ = 0. Low values of ζ (and υ = 1)

gives the skewed Laplace or Laplace distribution if ρ = 0.

The lower right corner of Figure 11 shows the estimated error density. We use the posterior samples

of the parameters reported in Table 4 to compute the estimated density and then report the point-

wise credibility intervals for the density. The results show that the residual terms in our non-linear

regression model are right skewed and also heavy tailed.
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Figure 1: Market-maker inventory and total squared vega position

The plot shows the number of options held by market makers, nt, defined as the sum of all ni,t, on the
left y-axis. On the right y-axis, the figure shows the total squared vega of their positions computed
as nt × vega2t . The data period is 1998-01-02 to 2014-08-29, based on 4,192 daily observations.
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Figure 2: VIX from midpoints, VIX from bids, and VIX bid-ask spreads

The figure plots the VIX computed from the midpoint and from the bid quote, respectively. The
yellow line plots the SPREAD, defined as the difference in VIX computed from the asks and bids. The
frequency of the three series plotted here, V IXm

t , V IXb
t , and V IXa

t −V IXb
t is monthly, observing the

data on the first trading day of each month for the period 1998-M01 to 2014-M08 (200 observations).
The y-axis has logarithmic scale.
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Figure 3: Bid-ask spread for SPX at-the-money puts and calls

The top figure plots the bid-ask spread for SPX average ATM puts and calls for the whole sample
period from 1998-01-02 to 2014-08-29, based on 4,192 observations. The bottom plot shows the same
bid-ask spread for the year 2003, using 252 daily observations, along with vertical bars for the option
expiration dates (dark gray) and the last day of the month (light gray).
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Figure 4: Estimated mark-ups for ask and bid quotes

The figure plots the estimated ask and bid mark-ups from the equilibrium model. These series are
based on the MLE estimates for Equation (18), reported in Table 4, for the VIX spread. Also plotted
are 99% confidence intervals, which are based on standard errors computed by finite differences and
the Delta Method. The sample period is 1998-01-02 to 2014-08-29, with 4,192 daily observations.
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Figure 5: Observed vs. estimated bid-ask spreads

The figure plots the observed and the fitted spread from the equilibrium model. The observed series is
V IXa

t − V IXb
t . The fitted series is based on the MLE estimates for Equation (18), reported in Table

4, for the VIX spread. Also plotted are 99% confidence intervals, which are based on standard errors
computed by finite differences and the Delta Method. The sample period is 1998-01-02 to 2014-08-29,
with 4,192 daily observations.
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Figure 6: VRP from mid-quotes and bias-corrected quotes

The figure plots the time series of Variance Risk Premia computed from mid-quotes, V RPm, and bias-
corrected quotes, V RPBC . Also plotted are 99% confidence intervals, which are based on standard
errors computed by finite differences and the Delta Method. The sample period is 1998-01-02 to 2014-
08-29, with 4,192 daily observations.
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Figure 7: FI from mid-quotes and bias-corrected quotes

The figure plots the time series of Fear Indices computed from mid-quotes, FIm, and bias-corrected
quotes, FIBC . Also plotted are 99% confidence intervals, which are based on standard errors computed
by finite differences and the Delta Method. The sample period is 1998-W01 to 2014-W34 (‘W’ stands
for calendar week), with 869 weekly observations.
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Figure 8: SRP from mid-quotes and bias-corrected quotes

The figure plots the time series of Skewness Risk Premia computed from mid-quotes, SRPm, and bias-
corrected quotes, SRPBC . Also plotted are 99% confidence intervals, which are based on standard
errors computed by finite differences and the Delta Method. The sample period is 1998-01-02 to 2014-
08-29, with 4,192 daily observations.
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Figure 9: Theoretical bid-ask spread as a function of inventory

The figure plots the theoretical bid-ask spread, Ztheory
t = ǫat +ǫbt , as a function of inventory, nt, resulting

from the market-maker model. All other modeling parameters are held constant (vega2t = 51.79×103,
Vart(∆V IXt+1) = 181.58, x = 0.02, γ = 0.44).
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Figure 10: Simulated inventory, mark-ups, and bid-ask spreads

The top figure shows simulated inventory, the middle figure plots simulated mark-ups ǫat and ǫbt , and the
bottom figure depicts the bid-ask spread, ǫat + ǫbt . Data are simulated from our model using equations
(13) for arrivals of bids and asks and (16)-(17) for the mark-ups. Vart(∆V IXt+1) is simulated as
a standard Cox-Ingersoll-Ross process with long-run mean 0.0001, mean-reversion rate 0.008, and
volatility parameter 0.16. We set the model parameters as follows: γ = 0.31, vega2 = 10, Da = 1.07,
Db = 2.066, Aa = 1, and Ab = 0.4.
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Figure 11: Impact of parameter values in the Generalized Hyperbolic density.
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Table 1: Summary Statistics

The table reports descriptive statistics for our data set of 4,192 daily observations from January 2, 1998 to
August 29, 2014. VIX is reported as a percentage variance measure scaled into monthly units. Similarly,

the risk-free rate, r
(f)
t , is quoted as a continuously compounded monthly percentage. ALL (ATM) denotes

the average prices of all (all at-the-money) option contracts written on the SPX. Inventory nt is the sum
of all holdings of active contracts in the market maker’s portfolio. vega2t is the average of the squared

vega of all these contracts. V̂art(∆V IXt+1) is the prediction from the GARCH model (3)-(4). Finally, the
Return is the log daily close-to-close price change, and RV is the sum of 77 5-minute intraday squared log returns.

Average Std. Dev. Skewness Kurtosis Min. Max.

V IXb 41.086 41.074 4.059 27.403 7.426 461.452
V IXa 48.597 51.189 4.569 33.589 8.981 612.812
V IXa − V IXb 7.510 11.416 8.038 98.626 0.496 238.223
ATMb 36.411 21.189 1.085 3.428 2.750 107.143
ATMa 38.343 21.724 1.068 3.393 3.625 113.269
ATMa−ATMb 1.932 0.944 3.366 31.312 0.125 15.325
ALLb 136.846 30.098 0.412 2.027 77.926 212.794
ALLa 139.017 30.543 0.409 2.008 79.721 215.780
ALLa−ALLb 2.170 0.825 3.311 31.855 0.193 13.457

r
(f)
t 0.185 0.173 0.409 1.599 0 0.524
nt -29.93×104 17.73×104 -0.405 2.419 -90.83×104 12.45×104

vega2t 51.79×103 16.81×103 0.829 3.414 21.83×103 117.32×103

V̂art(∆V IXt+1) 181.583 867.640 9.668 112.444 1.139 13.63×103

Return 1.73×10−4 1.27×10−2 -0.127 9.845 -0.097 0.109
RV 1.194 2.313 9.421 149.710 0.033 59.068
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Table 2: Determinants of the Spread

This table reports the results of OLS regression of Spread, defined as V IXa − V IXb onto contemporaneous
S&P 500 returns, change in Realized Variance, level of Realized Variance, end of month and expiration
dummies, as well as variables related to market-makers’ inventories of options: Inventory is the raw inventory
series, vega2 is the daily average vega of all options. The results are based on 4191 daily observations for the
period 1998-01-05 to 2014-08-29. The RV data are based on 5-minute returns from TAQ. Newey-West standard
errors are based on 120 lags.

Constant 4.147∗∗∗ 2.980∗∗∗ 2.260∗∗∗ 3.936∗∗∗ 3.978∗∗∗

(0.614) (0.539) (0.666) (0.584) (0.583)
Return −0.604∗∗ −0.966∗∗∗ −0.935∗∗

(0.270) (0.387) (0.457)
RV change −1.771∗∗∗ −0.337∗∗ −0.390∗∗

(0.369) (0.191) (0.194)
RV level 3.802∗∗∗ 4.408∗∗∗

(0.754) (0.836)
Month End −1.501∗∗∗ −1.578∗∗∗

(0.421) (0.415)
Expiration 1.268∗ 1.225∗

(0.798) (0.757)
|Inv×vega2 ×RV | 2.664∗∗∗ 2.750∗∗∗ 2.734∗∗∗

(0.745) (0.780) (0.782)
R2 0.251 0.601 0.674 0.257 0.262
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Table 3: Determinants of the VIXa and VIXb

This table reports the results of seemingly unrelated regressions (SUR) of V IXa and V IXb onto contempora-
neous S&P 500 returns, change in Realized Variance, level of Realized Variance, end of month and expiration
dummies, as well as variables related to market-makers’ inventories of options: Inventory is the raw inventory
series, vega2 is the daily average vega of all options. The results are based on 4191 daily observations for the
period 1998-01-05 to 2014-08-29. The RV data are based on 5-minute returns from TAQ. Newey-West standard
errors are based on 120 lags.

V IXb

Constant 29.502∗∗∗ 25.876∗∗∗ 22.785∗∗∗ 28.467∗∗∗ 28.724∗∗∗

(3.532) (2.722) (2.312) (3.302) (3.281)
Return −4.298∗∗∗ −5.850∗∗∗ −5.726∗∗∗

(1.106) (1.413) (1.672)
RV change −7.606∗∗∗ −2.533∗∗∗ −2.857∗∗∗

(0.792) (0.729) (0.728)
RV level 12.786∗∗∗ 15.390∗∗∗

(1.506) (1.488)
Month End 0.352 −0.118

(0.815) (0.828)
Expiration 1.619 1.356

(3.516) (3.325)
|Inv×vega2 ×RV | 9.173∗∗∗ 9.803∗∗∗ 9.704∗∗∗

(1.931) (2.100) (2.116)
R2 0.230 0.538 0.642 0.244 0.260

V IXa

Constant 33.648∗∗∗ 28.855∗∗∗ 25.045∗∗∗ 32.404∗∗∗ 32.702∗∗∗

(4.061) (2.926) (2.452) (3.777) (3.757)
Return −4.902∗∗∗ −6.816∗∗∗ −6.661∗∗∗

(1.364) (1.791) (2.122)
RV change −9.376∗∗∗ −2.871∗∗∗ −3.247∗∗∗

(0.945) (0.874) (0.874)
RV level 16.588∗∗∗ 19.798∗∗∗

(2.009) (1.985)
Month End −1.150 −1.696∗

(1.070) (1.056)
Expiration 2.887 2.580

(4.268) (4.034)
|Inv×vega2 ×RV | 11.837∗∗∗ 12.553∗∗∗ 12.438∗∗∗

(2.623) (2.821) (2.841)
R2 0.247 0.579 0.681 0.258 0.272
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Table 4: Parameter Estimates

The table reports parameter estimates of our equilibrium spread model. Mark-ups ǫat and ǫbt are given by

ǫ
a
t = max

(

1

Da

+ γ (−2nt + x) vega2
tVart(△VIXt), 0

)

, (30)

ǫ
b
t = max

(

1

Db

+ γ (2nt + x) vega2
tVart(△VIXt), 0

)

. (31)

We estimate D−1
a , D−1

b , γ, s using Bayesian MCMC and MLE assuming that the observed VIX spread

Zdata
t − Z

theory
t (Θ) ∼ N(0, s2) (Panel A) or Zdata

t − Z
theory
t (Θ) ∼ GH(0, s2, υ, ζ, ρ) (Generalized Hyperbolic -

Panel B). The model is estimated with 4,170 daily observations from February 4, 1998 to August 29, 2014. Note that
we scale the raw inventory, nt, and squared vega, vega2

t , series by a constant for the estimation to ensure comparable
magnitudes.

D−1
a D−1

b γ x s υ ζ ρ R2

Panel A: Normal errors

Bayes

Mean 6.01 0.04 0.44 0.02 8.97 39.2%
St.dev. (0.14) (0.03) (0.01) − (0.10)

MLE

MLE 6.01 0.03 0.44 0.02 8.96 39.2%
St.Err. (0.15) (0.01) (0.01) − (0.10)

Panel B: Generalized Hyperbolic errors

Bayes

Mean 6.43 0.02 0.32 0.02 10.00 −1.04 0.15 0.96 35.8%
St.dev. (0.15) (0.01) (0.01) − (1.23) (0.06) (0.03) (0.01)

MLE

MLE 6.45 0.01 0.32 0.02 10.12 −1.05 0.14 0.96 35.8%
St.Err. (0.09) (0.00) (0.01) − (0.66) (0.05) (0.02) (0.01)
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Table 5: Indices computed from mid-quotes and Bias-Corrected Quotes

Descriptive Statistics for the VIX, the FI, and the SKEW computed from mid-quotes and bias-
corrected prices, for 1998-01-02 - 2014-08-29 with 4,192 daily observations. For the latter series, we
report standard errors in square brackets that reflect the estimation uncertainty in Section 4. For
comparison, we also add the original CBOE VIX and the CBOE SKEW Indices. For FI computed
from mid quotes, we also report the time-varying tail shape parameters, α, and the (left) right jump
variation, (R)LJV ; the latter is in annualized percentage (square) variance units. In parenthesis,
we outline the corresponding values reported in Bollerslev et al. (2015) for their 1996-01 - 2013-08
sample. The “GMM-est.” denotes the GMM estimate that restricts the respective moment of (·)m
and (·)BC to be the same. The “J-stat.” reports the corresponding test statistic for the moment
restriction, and ∗, ∗∗, ∗∗∗ denotes a rejection at a 10%, 5%, and 1% level (based on χ2(1) critical values).

“Original” CBOE Squared VIX (scaled) V IXm V IXBC GMM-est. J-stat.

Mean 44.48 44.84 43.24 43.97 22.29∗∗∗

[0.82]
Std. 45.06 46.05 41.86 43.48 0.00

[0.39]
Skew. 4.28 4.32 3.97 4.13 3.53∗

[0.05]
Kurt. 30.66 30.37 26.45 28.13 0.00

[0.62]
AR(1) 0.97 0.97 0.97 0.97 0.00

[0.00]

V RPm V RPBC GMM-est. J-stat.

Mean 7.89 6.30 7.25 14.04∗∗∗

[0.82]
Std. 23.17 24.58 23.73 0.00

[0.27]
Skew. -3.43 -4.64 -3.92 16.53∗∗∗

[0.23]
Kurt. 51.30 56.83 53.68 0.00

[2.80]
AR(1) 0.86 0.90 0.88 0.97

[0.00]

α−

m α+
m LJVm RJVm FIm FIBC GMM-est. J-stat.

Mean 14.83 56.44 0.48 0.01 6.11 2.91 3.36 156.82∗∗∗

(16.23)(61.81) (0.45) (0.02) [0.10]
Std. 4.47 16.23 0.56 0.03 6.86 3.86 4.00 102.50∗∗∗

(5.33) (19.68) (0.54) (0.05) [0.11]
Skew. 0.43 0.39 5.24 9.96 5.29 2.95 3.36 3.82∗

(0.43) (0.65) (5.41) (5.03) [0.04]
Kurt. 3.32 3.16 50.89 129.23 51.26 20.03 24.17 2.21

(3.00) (3.52) (48.62) (32.80) [0.24]
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Table 5 – Continued from previous page

AR(1) 0.7341 0.80 0.53 0.18 0.51 0.35 0.38 3.51∗

(0.59) (0.67) (0.69) (0.11) [0.00]

“Original” CBOE SKEW SKEWmSKEWBCGMM-est. J-stat.

Mean 118.79 118.57 149.91 119.03 1,427.03∗∗∗

[4.20]
Std. 5.80 5.79 63.99 5.80 302,571.76∗∗∗

[0.63]
Skew. 0.70 0.69 3.32 1.11 24.72∗∗∗

[0.49]
Kurt. 3.77 3.76 41.37 4.65 386.27∗∗∗

[4.02]
AR(1) 0.9038 0.91 0.93 0.91 0.01

[0.01]

SRPm SRPBC GMM-est. J-stat.

Mean -2.11 -5.26 -2.29 367.55∗∗∗

[0.42]
Std. 1.79 6.82 1.82 3,109.19∗∗∗

[0.06]
Skew. -0.26 -3.10 -1.18 14.64∗∗∗

[0.41]
Kurt. 7.67 15.86 9.77 5.09∗∗

[3.19]
AR(1) 0.92 0.93 0.92 0.00

[0.00]
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Table 6: Fear Index and the Spread

This table reports the results of OLS regression of the Fear Index computed
from midpoints (FIm) onto the VIX, the VIX bid-ask spread (V IXa − V IXb),
estimated ask and bid mark-ups (ǫat and ǫbt), as well as their sum. The data period
stretches from 1998-01-09 to 2014-08-22, covering 868 weekly observations.

Constant 2.256∗∗∗ 2.140∗∗∗ 1.488∗∗ 1.365∗ 2.159∗∗∗

(0.608) (0.500) (0.792) (0.886) (0.497)
VIX 0.114∗∗∗ 0.061∗∗ 0.101∗∗∗ 0.110∗∗∗ 0.059∗∗∗

(0.035) (0.026) (0.030) (0.040) (0.024)
Spread −0.159∗ −0.178∗ −0.199∗

(0.123) (0.116) (0.136)
ǫat 0.176∗ 0.188∗∗

(0.116) (0.109)
ǫbt −0.387 −1.121∗

(0.884) (0.860)
ǫat + ǫbt 0.201∗∗ 0.183∗∗

(0.113) (0.110)
R2 0.286 0.292 0.316 0.321 0.291
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Table 7: SKEW Index and the Spread

This table reports the results of OLS regression of the SKEW Index computed from
midpoints (SKEWm) onto the VIX, the VIX bid-ask spread (V IXa − V IXb),
estimated ask and bid mark-ups (ǫat and ǫbt), as well as their sum. The data period
stretches from 1998-01-05 to 2014-08-29, covering 4,191 daily observations.

Constant 120.478∗∗∗ 119.318∗∗∗ 119.935∗∗∗ 119.988∗∗∗ 119.284∗∗∗

(0.938) (0.829) (0.849) (0.848) (0.827)
VIX −0.083∗∗∗ −0.047∗∗∗ −0.087∗∗∗ −0.088∗∗∗ −0.046∗∗∗

(0.032) (0.017) (0.031) (0.031) (0.016)
Spread 0.244∗∗ 0.204∗∗ 0.207∗∗

(0.109) (0.102) (0.100)
ǫat 0.183∗∗∗ 0.131∗∗∗

(0.055) (0.032)
ǫbt 0.342∗∗∗ 0.338∗∗∗

(0.138) (0.117)
ǫat + ǫbt 0.133∗∗∗ 0.183∗∗∗

(0.034) (0.056)
R2 0.105 0.090 0.121 0.123 0.089
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Table 8: Returns to the VIX Portfolio

This table summarizes the net returns, retjt = payt

V IX
j
t

− 1, j = {a,m, b,BC}, to investors who buy the VIX

portfolio and hold it to expiration, realizing the payoff payt given in (22). We report monthly returns, their
standard deviations, and annualized Sharpe ratios. The time period covers 1998-01-02 to 2014-07-31 with
4,171 observations, and V IXj

t is computed from bids, mid-quotes, asks, and bias-corrected prices, respectively.
Square brackets contain 90% confidence intervals obtained by the wild tapered block bootstrap of Hounyo (2014).

reta retm retb retBC

Mean -0.482 -0.440 -0.391 -0.423
[-0.557,-0.402] [-0.521,-0.354] [-0.479,-0.296] [-0.510,-0.330]

Std. 0.962 1.041 1.137 1.100
[0.702,1.289] [0.762,1.392] [0.831,1.521] [0.793,1.480]

Sharpe Ratio -1.735 -1.465 -1.190 -1.333
[-2.422,-1.179] [-2.058,-0.966] [-1.704,-0.749] [ -1.900,-0.853]
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