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Abstract
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frequency data. The Gibbs sampler uses simple conjugate posteriors even in high dimensional parameter
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1 Introduction

Economic data are rarely collected at the same instances in time. Data from liquid markets are available

almost continuously, while aggregate macro data in many cases are available only at monthly, quarterly, or

annual frequencies. Mixed and irregular sampling frequencies represent a significant challenge to time-series

econometricians.

This paper develops Bayesian estimation of mixed frequency Vector Autoregressions (VAR’s). The

method is a simple, yet very powerful algorithm for Markov-Chain-Monte-Carlo sampling from the pos-

terior distributions of the VAR parameters. The algorithm works in the presence of mixed frequency or

irregularly spaced observations. The posterior is conditioned on data observed at mixed frequencies rather

than simply data observed at the coarsest frequency. The method follows from the assumption that the

econometrician simply does not observe the high frequency realizations of the low frequency data, and can

accordingly treat these data as missing values. Consequently, and consistent with the standard utilization

of missing values in Bayesian econometrics, the Bayesian Mixed Frequency (BMF) algorithm developed is

a Gibbs sampler that produces alternate draws from the missing data and the unknown parameters in the

model. Under typical assumptions about normally distributed exogenous shocks, the VAR’s linear structure

allows for draws from Gaussian conditional distributions for estimating the missing data, along with draws

from Gaussian and inverse Wishart conditional posterior distributions for the parameters in the model.

Since this Gibbs sampler requires only simulation from known densities, it is extremely simple to implement.

There has been much work addressing the issue of mixed frequency data from a variety of different

approaches. An early contribution is the Kalman filtering approach introduced by Harvey & Pierse (1984),

which notes that for linear VAR models, missing observations can be incorporated by simply skipping a

term from the updating equation whenever an observation is missing. The VAR’s linear and Gaussian

form makes it straightforward to formulate a state-space form. However, the Kalman filter approach is

potentially cumbersome when the missing data occur at irregular frequencies, especially if there are multiple

series with missing data at differing frequencies. In addition, the Kalman filter yields a likelihood function

that is non-linear and non-Gaussian over a potentially very large parameter space; analyzing such likelihood

functions often proves diffi cult both from frequentist and Bayesian viewpoints. The BMF approach, by

2



contrast, handles irregular and multiple missing series with ease, and the Gibbs sampling from standard

densities makes the analysis of the resulting posterior densities very tractable.

Another approach, suggested by Miller & Chin (1996), uses monthly data to improve quarterly variable

forecasts. The method is an iterative procedure that first uses quarterly observed variables to construct quar-

terly forecasts, then uses monthly observed variables to construct quarterly forecasts, and finally combines

the two forecasts using estimated weights. Corrado & Greene (1988) show that adding monthly information

via a monthly pooling procedure can improve quarterly forecasts. The BMF method, in comparison, uses all

the relevant information to make multi-frequency forecasting for each variable in the VAR, so in the context

of monthly and quarterly data, considers forecasts of monthly variables as well. This difference implies that

BMF exploits all the available information to forecast any variable in the model, which offers the advantage

of producing additional forecasts but also allows for inference based upon the effects of quarterly variables

on monthly ones. Other papers that use bridging type models include Baffi gi et al. (2004), and those that

use bridging with factors, such as Giannone et al. (2008) and Angelini et al. (2008).

A growing body of work considering the estimation of mixed frequency models is the work on MIDAS

(MIxed DAta Sampling) described in Ghysels et al. (2004), Andreou et al. (2010), Ghysels et al. (2007),

among others. The MIDAS method allows regressions of a low frequency variable onto high frequency

variables. For example, Ghysels et al. (2004) study the predictability of stock returns over relative low

frequencies (monthly or quarterly) from high frequency volatility estimates, Andreou et al. (2009) consider

the importance of daily data for forecasting monthly or quarterly real data, and Bai et al. (2010) expand

MIDAS to deal with state-space models. While the MIDAS approach differs substantially from the Kalman

filter approach of Harvey & Pierse (1984), it potentially suffers from the same pitfalls: handling observations

that are irregularly spaced requires altering the estimated equations as in Francis et al. (2011), and larger

systems may lead to significant numerical burdens.

In contrast to these methods, the approach taken in this paper is from a Bayesian perspective, and will

consequently treat lower frequency data as missing. The missing data approach to higher frequency data has

a history from both a Bayesian and frequentist perspective. Chow & Lin (1971) discuss how to interpolate

time series using related series. Sims & Zha (2006b) and Leeper & Zha (2003), for example, use quarterly
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GDP interpolated to monthly intervals in monthly VARs. Other mixed-frequency VAR approaches use

stock-flow relationships for interpolation, such as Zadrozny (1988), Mittnik & Zadrozny (2005), or Mariano

& Murasawa (2010). The BMF approach, on the other hand, follows the Bayesian approach to missing

data, similar to, for example, Kim et al. (1998).

The traditional approach for dealing with mixed frequency data is to discard high frequency data and

simply perform estimation on the coarsest frequency data. This estimation strategy potentially discards

information contained in the higher frequency data, yet is used often in macro time series econometrics,

especially within the context of VAR estimation, making it a useful benchmark. Indeed, a number of

Bayesian and frequentist applications, including studying the effects of monetary policy, oil, or uncertainty

shocks, include VAR’s estimated at a monthly frequency despite the availability of higher-frequency data.

The coarse estimation can be used to identify parameters in the VAR even if the econometrician assumes

that the true VAR evolves at some higher frequency than that used for estimation because Gaussian VAR’s

are closed under temporal aggregation.

In addition to developing the methodology, this paper demonstrates the advantages of the BMF estimation

method using numerical simulations and actual data. For numerical simulations over a range of parameter

constellations, BMF uniformly dominates estimation using coarse sampling from the frequentist perspective

of mean squared deviations from the true values. After considering simulated data, two applications highlight

the advantages of BMF using actual data. The first involves a monthly and quarterly set of data on

the real economy, and the second involves combining monthly real economic variables with high-frequency

financial variables. In both contexts, BMF outperforms the coarsely sampled estimator in that the posterior

standard deviations are smaller when using BMF. Which posterior standard deviations decrease the most

depend on the application, it can either help accuracy for the low or the high frequency variables. The

BMF approach also improves the estimation of impulse response functions, as the decrease in parameter

uncertainty associated with BMF is typically reflected in tighter confidence bands for the impulse response

functions. Among other things, this result implies that BMF can allow for sharper conclusions about the

impact of economic policies or the effects of shocks.

The remainder of the paper is organized as follows: Section 2 discusses the construction of a Gibbs
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sampler for the model. Section 3 presents simulation based evidence for the advantages of using the BMF

approach. Sections 4 and 5 present two examples of applications of mixed frequency estimation; the first

example uses a monthly and quarterly model of the macroeconomy, and the second example uses weekly

financial data along with monthly data on output. Finally, Section 6 concludes.

2 Econometric Methodology

This section discusses the main algorithm of data augmentation and estimation in the presence of missing

data. The model is

yt = A+
k∑
l=1

Blyt−l + εt, εt ∼ N (0,Σ) (1)

where dim (yt) = N . Denote the set of parameters Θ = (A,B,Σ), yt = (xt, zt) where dim (xt) = Nx and

dim (zt) = Nz such that Nz +Nx = N and suppose xt is a fully observed variable and zt is a variable with

missing data.

For simplicity, focus on the case when k = 1 —Appendix A extends the following discussion to the case

when k > 1 —and assume that z and x are recorded at two frequencies, but note that the method applies to a

multi-frequency dataset. In the example application in Section 4, xt is observed monthly and zt is observed

quarterly; Section 5’s example has xt observed weekly and zt observed monthly. In the case of monthly and

quarterly observations, the missing data are {ẑ1, ẑ2, ẑ4, ẑ5, ẑ7, ...}, where ẑt denotes a sampled observation at

time t. Let ẑ denote the vector of observed and sampled data, ẑ\t denote all elements of ẑ except the t-th

ones, and let Ŷ (i) denote the full collection of observed and sampled data at iteration i.

The BMF estimator is an application of Bayesian Gibbs sampling, which requires iterating over objects

of interest, sampling those objects from known distributions conditional upon the remaining objects. In the

current setup, the objects of interest are the missing observations, the matrices A and B, and the covariance

matrix Σ. Given prior distributions and initial values of the parameters, the i-th iteration of the MCMC

algorithm reads

• Step 1 : for t = 1, .., T , draw missing data ẑ(i)t | x, ẑ
(i−1)
\t , A(i−1), B(i−1),Σ(i−1), where ẑ(i−1)\t is the vec-

tor of most recently updated missing values and A(i−1), B(i−1),Σ(i−1) are the latest draws of A,B,Σ, re-
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spectively. For example, in the case of consecutive updating, ẑ(i−1)\t = (ẑ
(i)
1 , ẑ

(i)
2 , .., ẑ

(i)
t−1, ẑ

(i−1)
t+1 , .., ẑ

(i−1)
T ).1

• Step 2 : draw A(i), B(i) | Ŷ (i),Σ(i−1)

• Step 3 : draw Σ(i) | Ŷ (i), A(i), B(i)

The new step in the procedure is Step 1, which is drawing missing data given the parameters in the model

and the fully observed data. Except for this first step, the procedure is a standard Normal linear model

which, under conjugate priors, yield Normal and inverse Wishart posterior distributions. Since drawing

from the relevant posteriors in Steps 2 and 3 is a well-known procedure, the following focuses on Step 1,

sampling the missing data given a set of parameters.

2.1 Step 1: Sampling the Latent Data

Step 1 of the Gibbs sampler requires drawing the latent data from its conditional posterior distribu-

tion. It is convenient to draw a single t-th element in one operation, so the goal is to draw ẑ
(i)
t |

x, ẑ
(i−1)
\t , A(i−1), B(i−1),Σ(i−1). Separating the VAR into its components:

 xt

zt

 =

 Ax

Az

+

 Bxx Bxz

Bzx Bzz


 xt−1

zt−1

+

 ut

vt

 (2)

where  ut

vt

 ∼ N
0,

 Σxx Σxz

Σzx Σzz


 . (3)

Appendix A shows that the conditional density for zt is the multivariate normal

ẑt | ẑ\t, x,Θ ∼ N(M,W )

It is now straightforward to construct Gibbs sampling to draw ẑt, since it is also conditionally normal. One

1For notational simplicity, this notation assumes that all zt are missing; implicitly the updating equation for non-missing
data is just ẑ(i)t = ẑ

(i−1)
t .

In addition, the exact timing of updating is flexible; a possible alternative is to use the entire vector of missing values from
the previous iteration, so ẑ(i−1)\t = (ẑ

(i−1)
1 , ẑ

(i−1)
2 , .., ẑ

(i−1)
t−1 , ẑ

(i−1)
t+1 , .., ẑ

(i−1)
T ). However, this timing tends to be less effi cient.
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possibility is to draw the elements in a consecutive order. Another approach is to draw odd and even elements

of z alternately, which can easily be implemented in a vectorized programming environment.

2.2 Coarse Sampling Estimation

The standard approach to mixed frequency estimation is to delete the high frequency data such that the

VAR is estimated at whichever frequency is jointly available. Thus, in estimating a model with, in the case

of the example in Section 4, monthly and quarterly data, one would sample both variables at the quarterly

frequency. In choosing a quarterly sampling frequency for the monthly data, one throws away information

contained in the higher frequency data.

It should be noted that, in the context of many macroeconomic applications that use mixed frequency

data, many simply perform estimation at the lowest frequency. Within the literature on monetary policy

shocks, papers such as Christiano et al. (1996), Christiano et al. (1999), Sims & Zha (2006a), Sims & Zha

(2006b), and Banbura et al. (2010), ignore the high frequency movements in interest rates and financial

variables and estimate monthly or quarterly VARs. In studying the effects of oil price shocks, Kilian &

Park (2009), Kilian et al. (2009), and Kilian & Vigfusson (2011) discard information in high-frequency price

movements, again estimating using a monthly frequency. Monthly estimation of VARs is also used by Bloom

(2009) to study the effects of uncertainty shocks, even though some of the relevant asset pricing data are

available at much higher frequencies. In each of these applications, discarding data at high frequencies and

estimating using the lowest sampling interval is standard procedure.

The estimator based solely on coarse data is not an unreasonable estimator. In particular, it is true that

the estimator can be used to estimate the true values of the parameters in a VAR even if the true VAR evolves

at a higher frequency than that used for estimation. This fact follows because the model Yt = A+BYt−1+εt

is closed under temporal aggregation, so that Yt+n = An +BnYt + εtn where the new coeffi cients An and Bn

are given by

An =

n∑
s=1

Bs−1A (4)

Bn = Bn (5)
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and the covariance matrix of the error εtn is

Σn =

n∑
s=1

Bs−1ΣBs−1′. (6)

Estimation of the lower frequency VAR produces an estimate of Bn, denoted B̂n, which can then produce

an estimate B̂ by computing B̂1/nn . Then, using (4) and (6) produces estimates of A and Σ. If, for example,

Bq is an estimate of B obtained using quarterly sampled data, inverting (5) gives the implied monthly

estimate B
1
3
q . Equations (4)-(6) thus allow the comparison of estimates obtained through BMF with those

produced by coarse estimation. Such comparisons are best done by transforming the posterior simulations

and then computing the quantity of interest. For example, to compare posterior standard deviations from

coarse estimation at a quarterly frequency to BMF at a monthly one, the sample standard deviation should

be computed based upon the converted draws of the Gibbs sampler, so computing 1
G

∑G
i=1

(
B(i)

) 1
3 for G

iterations. This conversion gives an estimate of the monthly implied standard deviation from quarterly

coarse estimates for easy comparisons across the two methodologies.

3 Simulation Results

Having presented the methodology, this section examines BMF using simulated data. The purpose is to

analyze how BMF fares relative to estimation at the coarsest frequency when the objective is to recover

parameter estimates, say the posterior mean, that are as close as possible in some sense to the truth. This

is very much a frequentist way of thinking, and so the exercise should accordingly be interpreted as a small

sample study of the posterior mean as a frequentist parameter estimate.

Table 1 reports the root mean squared error of the parameters estimated using BMF versus estimation

after discarding the high frequency data for four different parameter constellations, each with two sample

sizes. The parameterizations use two different coeffi cient matrices and two different covariances among the

errors. The data are generated by a monthly bivariate VAR, where the variable x is observed every period,

and the variable z is observed every third period t = 1, 4, 7, ..., 3T , so T is the number of quarters in the

sample, meaning there are 3T months. In the shorter sample, there are T = 20 quarters, and in the longer
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sample there are T = 80.

As can be seen, BMF tends to attain smaller root mean squared errors and lower absolute biases for the

parameter estimates. Two additional features should be mentioned.

Comparing the results for Simulation 1 with Simulation 2, and Simulation 3 with Simulation 4, the

matrices A and B are identical, and the the difference in the parameterization is the covariance matrix Σ.

Simulations 1 and 3 have diagonal covariance matrices, and Simulations 2 and 4 have correlated shocks. In

the case of correlated shocks, BMF uniformly performs better than coarse estimation. Incorporating the

additional high frequency data allows better inference on the parameters because it helps distinguish between

the sources of varation. In other words, BMF exhibits better performance in the case of correlated shocks,

because information contained in the high frequency observations becomes important as the contemporaneous

correlation between the unobserved and observed data increases.

Second, for each simulation parameterization, the improvement provided by BMF is comparable across

the different dataset lengths. This suggests that incorporating mixed frequency data can boost accuracy

for both small and longer datasets. Since the performance of coarse estimation improves with sample size,

a relatively constant relative improvement of BMF suggests that mixed frequency data will produce a larger

gain with small sample sizes.

Hence, this section shows that BMF has significant gains compared to the usual estimation strategy of

using the coarsest frequency data in terms of root mean squared errors and absolute bias. Having provided

a comparison on simulated data, the following two sections illustrate two experiments widely studied in the

economic literature: first, estimating GDP at monthly frequency from monthly data, and second, exploring

the information contained in financial variables for real variables.

4 Application I: Monthly and Quarterly Data

4.1 Data Description

This section provides an example implementation of the algorithm to data collected at monthly and quarterly

frequencies. The primary objective is to formulate a model that allows analysis of GDP at a frequency higher
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than the quarterly data readily available. Since GDP is a widely cited indicator of economic performance,

using higher frequency data may help to provide more timely snapshots of the economy than quarterly data

allows.

This application is of considerable interest in the mixed frequency estimation literature. Kuzin et al.

(2010) use quarterly GDP and a set of monthly indicators to compute monthly estimates of quarterly GDP

in the Euro area following the MIDAS estimation strategy, Mittnik & Zadrozny (2005) pursue a similar

objective using the Kalman Filter. Aruoba et al. (2009) use a dynamic factor model to estimate economic

activity. Barhoumi et al. (2008) compare several estimation strategies that generate monthly GDP estimates

using quarterly GDP and monthly indicators, Diron (2008) assesses the ability of real-time monthly data to

help forecast quarterly GDP, and Marcellino & Musso (2010) study the estimation of real-time output gaps.

To keep the exercise simple and transparent, this application combines monthly data on industrial pro-

duction, inflation, and the unemployment rate with quarterly real GDP data for the US. The data are the

twelve-month change in industrial production and inflation, the four-quarter change in real GDP, and the

unemployment rate, all expressed as percentage points. For the mixed frequency data, the timing assump-

tion is that every month, the monthly data are observed, but the quarterly data are observed only during

the last month of each quarter. Since the timing assumes that a period equals a month, the analysis below

converts the quarterly results to a monthly frequency using the method described in Section 2.2. The data

run from Jan-1948 to Jun-2011, for a total of 762 months or 254 quarters. Summary statistics for the

variables are presented in Table 2.

4.2 Estimation Results

Tables 3, 4, and 5 display the estimates of the constant A, the coeffi cient matrix B, and the variance-

covariance matrix Σ, respectively, for the BMF estimator using monthly observations versus the coarse

estimation strategy of discarding the first two months of each quarter and therefore using only quarterly

observations. In all cases, the ordering of the variables follows that in Table 2: industrial production growth,

inflation, unemployment rate, and real GDP growth.

Table 3 shows the estimates of the constant terms in the VAR, converted to a monthly frequency. The
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two estimates produce somewhat different posterior means for the constant terms, but they are all within

one standard deviation across the methods. Noticeably, however, the posterior standard deviations are

uniformly smaller for the monthly BMF than for the quarterly estimates, so BMF produces more precise

estimates.

Table 4 shows the estimates of the coeffi cient matrices B, again with the quarterly estimates converted to

their monthly counterpart. Similar to the estimates for the constant in Table 3, the posterior means across

methods are close with the two methods. Again, the standard deviations generated by BMF are uniformly

smaller than those produced by quarterly estimation, which reflects the fact that including monthly data

provides more information about the persistence of the process.

Figure 1 displays the kernel density estimates of the marginal posterior densities for the implied monthly

VAR coeffi cients using the monthly BMF and versus quarterly estimation. As noted in Table 4, the point

estimates do not vary greatly across methods, the bigger difference is in the posterior standard deviations.

The posteriors using the monthly BMF have sharper peaks, reflecting the lower standard deviations. The

most notable differences come in the fourth row and fourth column of plots, which are the estimates associated

with the infrequently observed quarterly real GDP. So BMF improves the precision of the estimates for all

variables, but has the biggest difference for the coarsely observed quarterly GDP.

Table 5 reports estimates of the residual covariance matrix Σ from monthly BMF and from quarterly

estimation. In this case, there is a very substantial reduction in the posterior standard deviations for each

of the coeffi cients. In general, the decrease in posterior standard deviations is the most noticeable for the

monthly variables, showing that including the higher frequency data tends to produce more precise estimates

of the covariances to the shocks.

4.3 Impulse Responses

The previous subsection discussed the improvement in estimates from incorporating the higher frequency

data, but the question remains whether the lower standard deviation translates to changes in dynamics

implied by the VAR. Figure 2 displays a comparison of impulse response functions between the monthly

BMF estimate and the quarterly estimate converted to its monthly counterpart. The plots are very similar
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for the most part, suggesting that both estimates yield similar responses of the economy to the exogenous

shocks. In most cases, the responses are almost identical, with both methodologies yielding humped-shaped

responses for certain variables and monotonic responses from others. The cases that differ the most, which

are the effects of GDP shocks, have generally the same shape, and the responses are within each others’

confidence bands.

Despite the similarities in the shapes of the impulse responses between the two estimates, the accompanied

confidence bands suggest that the responses produced using BMF are often more precise than those produced

with just quarterly data. The most marked increase in precision occurs in identifying the effects of the various

shocks on the monthly variables. Since these are the most frequently observed data, the ability to include

these more frequent data in the estimation using BMF produces uniformly tighter confidence bands. For the

shocks to the monthly variables, the decrease in the size of the confidence bands is relatively small, which

reflects the fact that since those data are observed at the same frequency, adding more frequent observations

doesn’t have as much of an impact. The more significant reduction in the width of the confidence bands

occurs for the effects of GDP on the monthly variables. With the coarsely sampled estimation method,

since the data are observed quarterly, comovements of the variables, and hence the effects of shocks, are

relatively diffi cult to distinguish. On the other hand, with BMF the shocks are more easily traced out

since the comovements of variables are observed at a monthly frequency. Hence it is not surprising that the

improvement of BMF is strongest among the variables for which BMF allows more observations.

The use of the BMF estimates, therefore, serves as a significant improvement when analyzing impulse

response functions. The actual response functions differ only marginally, but the confidence bands for the

BMF estimates suggest stronger estimates of the effects of exogenous shocks. The inclusion of the additional,

more frequent observations that the BMF estimate makes it much easier to identify the responses of those

more frequent observations.
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5 Application II: Weekly and Monthly Data

5.1 Data Description

The application in the previous section showed how to use BMF to combine monthly and quarterly data,

this application turns to using higher frequency financial data to inform inference about aspects of the real

economy. Financial data are often available on an almost continual basis: asset prices and interest rates

change even by the minute. This example examines how high-frequency data may help investigate the

impact of financial variables or asset prices on output. As noted above, industrial production is available

at a monthly frequency, and measures output in a set of subsectors in the economy. Since these production

sectors may be especially influenced by changes in interest rates or oil prices, the high frequency data are

measures of the level and slope of the yield curve, as well as spot oil prices.

Interest rate conditions may affect production decisions, and oil is often an essential input to production,

so it is natural to consider these variables along with IP. A number of papers such as Kilian & Park (2009),

Kilian et al. (2009) or Kilian & Vigfusson (2011), to name a few, estimate monthly VARs in order to study

the affects of oil shocks, even though the spot oil price changes much more frequently. So the analysis uses

the spot real price of West Texas Intermediate crude oil, and a measure of the intercept and slope of the

yield curve of interest rates. The slope of the yield curve is defined as the difference in yields between

the seven- and one-year zero coupons. The slope gives expectations about future interest rates and because

it has been frequently noted that an inverted yield curve (negative slope) tend to precede recessions. All

constant maturity zero-coupon yield data are from the dataset by Gurkaynak et al. (2006). While these

variables are available at extremely high frequencies, the analysis below focuses on weekly data. The data

run from the first week of Jan-1986 to the last week of Jul-2011, for a total of 1336 weekly observations and

307 monthly observations. Summary statistics for the variables are presented in Table 6.

In addition to being able to address the impact of interest rates and oil on industrial production, the

choice of weekly intervals presents an interesting challenge for mixed-frequency data. The assumption of

timing is the following: the last business day of each week (usually Friday but occasionally Thursday), the

yield curve and oil spot prices are observed, and the last Friday (or Thursday) of each month, the twelve-
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month growth rate of industrial production is observed. The challenge is that most months will have

four weekly observations per month, but there will be some months that have five weeks associated with

them. While BMF can handle this irregularly observed data with ease, using a method such as the Kalman

filter or MIDAS would require either ignoring the fifth week in these months or changing the structure of

the estimated equations in these months. Since the base period considered is a week, the analysis below

converts the monthly estimates to their weekly counterparts following the method described in Section 2.2.2

5.2 Estimation

Tables 7 and 8 display the estimates of the constant A and the coeffi cient matrix B, respectively, for the

BMF estimator using weekly observations and versus the discarding all but the last week of the month and

therefore using only monthly observations. In all cases, the ordering of the variables follows that in Table

6: yield curve intercept, yield curve slope, oil price, and industrial production.

Table 7 contains the estimates of the constant terms in the VAR, converted to a weekly frequency. Three

of the posterior means are similar across methods, the third variable, oil, shows a marked change in posterior

estimate and reduction in posterior standard deviation, but even this change is small relative to the standard

deviations.

Table 8 shows the estimates of the B coeffi cients, again with the monthly estimates converted to their

weekly counterpart. As with the previous application, most of the posterior means are similar across

methodologies, and BMF tends to have smaller posterior standard deviations. The notable exception to

the similar posterior means are the estimates associated with oil, the third variable in the VAR. In the

previous example, BMF provided the biggest reduction in standard errors for the coarsely observed GDP,

but here the biggest reduction is associated with the finely observed oil price. The reason for this result is

apparent from comparing the descriptive statistics in Table 6, which show that the oil variable has by far the

biggest standard deviation and the lowest autocorrelation by a significant margin. Consequently, when oil

is included at a high frequency, the inclusion adds a lot more information about the dynamics of the VAR

2 In practice, the conversion of irregularly spaced data can be cumbersome, since, in this case, there are not a fixed number
of weeks per month, and therefore equations (4), (5), and (6) cannot be directly applied. So to convert the monthly estimates
to weekly estimates, the first step is to convert the monthly to their "whole-sample" counterparts (307 months per sample) and
then to their weekly counterparts (1 sample per 1336 weeks). Because of the diffi culty of inverting (6) in this case, the reported
results here focus on the estimates of A and B.
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at a weekly interval.

Figure 3 displays the kernel density estimates of the marginal posterior densities for the implied weekly

VAR coeffi cients using the weekly BMF versus when only monthly data are used. The results seen in Table

8 are striking in these plots: the posterior estimates tend to be fairly similar, but there is significant gain in

the precision of estimates associated with the third variable, which is the spot price of oil. Moving from

monthly data to weekly has a large gain in precision of the posterior estimates associated with oil, as reflected

by the high peaks of the marginal posterior in the third column and third row of subplots.

5.3 Impulse Responses

After noting the gains in accuracy from the parameter estimates, especially for the oil variable, Figure 4

shows the effects of incorporating weekly data on the impulse response functions. As with the previous

application, the confidence bands are smaller for the BMF estimator. And reflecting the smaller standard

errors associated with the parameters corresponding to the effects of oil, the narrowing of confidence bands

is most pronounced for the oil variables. The shapes of the impulse responses are nearly identical across

the two methodologies, but slights shifts in impulse responses from the weekly data may lead to different

conclusions. For example, the "Oil on Oil" response is not very persistent for either case, but the relative

persistence is greater for BMF. In addition, the BMF confidence intervals for oil cover zero in the case of

"Oil on Level" and "Oil on Slope" meaning that the significance of the shocks may be reversed with the

inclusion of higher frequency data.

6 Concluding Remarks

This paper considers estimation of first order VAR’s using data sampled at mixed frequencies. The method-

ology uses Gibbs sampling the unobserved data at the high frequency to generate estimates with generally

smaller standard errors. The simulation experiments demonstrate that BMF produces more accurate esti-

mates of model parameters than the basic approach of sub-sampling at the coarse data frequency, and the

two example applications show that using higher frequency data may produce sizable gains.

Improved accuracy is not the only advantage of the BMF estimator. Another benefit is the ability
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to update forecasts of a coarsely observed variable in response to new arrival of data measured at high

frequencies. Along the lines of the applications presented above, examples include updating forecasts of

next quarter GDP in response to monthly measurements of data or using weekly or even daily financial data

to forecast aspects of the real economy. The BMF framework allows for a natural approach to incorporate

high frequency observations to the low frequency forecasts, which would avoid the use of ad-hoc forecast

revisions.

The approach is implemented here using a first order vector auto-regression for simplicity, but there are

many possible extensions that generalize the this approach.

One potential advantage of the Bayesian simulation approach is that it easily generalizes to more compli-

cated models. For example, both financial market and macro variables are known to exhibit time-varying

volatility. Following Jacquier et al. (1994), incorporating stochastic volatility into a VAR setting simply

requires adding an additional Gibbs sampling draw for the unobserved volatility path. In a similar vein, the

Bayesian approach can easily incorporate heavy tailed error distributions in the form of mixture of normals

or t distributions, Markov mixtures as in Albert & Chib (1993) or jumps as in Eraker et al. (2003).

It is useful to consider how BMF compares to a Kalman filtering approach. The linearity of the VAR

coupled with Gaussian errors implies that it is possible to write the unobserved high frequency data in a state

space form, enabling the use of a Kalman filter approach to a basic model. One advantage of the Kalman

filtering approach is that it does not require posterior simulation of unobserved data. On the other hand,

the resulting likelihood function needs to be analyzed numerically. Frequentist analysis through maximum

likelihood is possible, although this requires a numerical search in a typically high dimensional parameter

space. For Bayesian inference, BMF avoids using Metropolis Hastings or other methods that would be

required in to deal with the non-Gaussian nature of the posterior computed through Kalman filtering.

The application to weekly and monthly data in Section 5 highlights a second advantage of BMF over the

Kalman filter and MIDAS. In the case of irregularly spaced data, where there are an unequal number of

observations per unit of coarsely observed data, the specification of the Kalman filter and MIDAS equations

can be awkward and tedious, whereas BMF requires no such changes. For the Kalman filter approach, the
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state equation is the VAR equation

 xt

zt

 =

 Ax

Az

+

 Bxx Bxz

Bzx Bzz


 xt−1

zt−1

+

 ut

vt

 (7)

and the observation equation changes from

Y obst =

 I 0

0 I


 xt

zt

 (8)

if zt is observed, to

Y obst =

 I 0

0 0


 xt

zt

 (9)

if zt is not observed. In the case of mixed frequency data where the missing data occur at regular frequencies,

such as the monthly and quarterly application, the observation equation switches between (9) and (8)

systematically. With irregularly spaced data, such as the weekly and monthly application, the switching

observation equation changes at different intervals, making implementation more diffi cult. With even more

irregular observations, such as if zt has variables that are observed not at the same frequency, the complexity

in changing the observation equation can grow substantially. The BMF approach does not require this

constant changing of observation equations, since it simply draws all the missing data conditional on the

parameters regardless of the observation interval.

A potential disadvantage of the VAR approach is that, especially as the number of lags grows, the number

of parameters to estimate grows considerably. The MIDAS approach, by comparison, typically focuses on

one equation to forecast one coarsely observed variable with more frequently observed variables. Considering

this setup for the application of weekly and monthly data from Section 5, the MIDAS approach forecasts

monthly industrial production using the weekly interest rate and oil data without putting restrictions on how

industrial production affects the weekly data. However, BMF can incorporate this flexibility by including

certain variables as exogenous rather than in the endogenous vector in the VAR. Then, for example, interest

rates and IP could be affected by the exogenous evolution of oil, thereby ignoring other feedback effects on oil.
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Of course, whether to incorporate variables as endogenous or exogenous depends upon the application and

research question, but the important point is that BMF handles these restrictions with minimal modification

to the VAR model considered here.

Another useful generalization of the VAR approach is to consider the use of BMF in connection with linear

state-space models. Consider the case with an observation equation Yt+1 = C +DXt+1, and state-equation

Xt+1 = A+BXt+εt+1, where there is a mixed sampling frequency for Yt. The VAR(1) framework discussed

in this paper nests the state-space model by writing Y ∗ = (Y,X), and that Y ∗t+1 = A∗ + B∗Y ∗t + ε∗t+1 and

A∗ = (C,A),

B∗ =

 0 D

0 B

 . (10)

BMF then proceeds to estimate this model by simulating, as before, the sparsely observed elements of Y,

but in addition treats X as an unobserved variable —a variable observed with zero frequency. Importantly,

the algorithm for drawing the missing data applies directly in this setting. To proceed to the second step of

the Gibbs sampler which involves drawing the parameters, the algorithm needs only slight modifications to

impose the zero-constraints on B∗. Note that the estimation of VARMA models can be implemented using

this approach.

This paper has also not considered the out-of-sample forecasting ability of BMF estimators. Of course,

given the applications, forecasting is a natural extension given mixed frequency data. As with any VAR-

based method, forecasting given BMF estimates involves iterated forecasting rather than direct forecasting.

Marcellino et al. (2006) and Chevillon & Hendry (2005) discuss the advantages of both types of forecasting,

and De Mol et al. (2008) show Bayesian VARs can have good forecasting performance.

Finally, while the BMF algorithm applies in general, identification considerations must, as usual, be

investigated on a case by case basis depending upon the application. Consequently, the BMF framework

developed in this paper represents an interesting starting point for a number of different extensions.
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7 Appendix A: Derivations

This appendix shows the derivations for the analytical conditional distribution of the latent data. The

structure is a VAR(k) model:

yt = A+B1yt−1 +B2yt−2 + · · ·+Bkyt−k + εt, εt ∼ N (0,Σ) (11)

The partition between the fully observed variable xt and the variable with missing data zt is given by

 xt

zt

 =

 Ax

Az

+

 B1,xx B1,xz

B1,zx B1,zz


 xt−1

zt−1

+ · · ·

+

 Bk,xx Bk,xz

Bk,zx Bk,zz


 xt−k

zt−k

+

 εx,t

εz,t

 . (12)

where  εx,t

εz,t

 ∼ N

 0

0

 ,
 Σxx Σxz

Σzx Σzz


 .
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By Bayes rule, the conditional probability, for l = 0, ..., k, is given by

p (xt+l, zt+l|xt−k:t+l−1, zt−k:t+l−1,Θ) =
p (xt−k:t+l, zt−k:t+l,Θ)

p (xt−k:t+l−1, zt−k:t+l−1,Θ)
(13)

where xt−k:t denote the sequence of observations of x from t− k to t. The conditional probability for zt is

related to the previous expression by

p (zt|xt−k:t+k, zt−k:t−1, zt+1:t+k,Θ) ∝
k∏
l=0

p (xt+l, zt+l|xt−k:t+l−1, zt−k:t+l−1,Θ) (14)

Since each joint distribution is conditionally normal, each of these has the form

p (xt+l, zt+l|xt−k:t+l−1, zt−k:t+l−1,Θ)

∝ exp

−
1

2

 εx,t+l

εz,t+l


′  Σxx Σxz

Σzx Σzz


 εx,t+l

εz,t+l


 (15)

∝ exp

{
−1

2

(
ε′x,t+lΣ

xxεx,t+l + ε′x,t+lΣ
xzεz,t+l + ε′z,t+lΣ

zxεx,t+l + ε′z,t+lΣ
zzεz,t+l

)}

where  Σxx Σxz

Σzx Σzz

 =

 Σxx Σxz

Σzx Σzz


−1

Define, for l = 0, 1, ..., k, the portion not explained by zt:

ux,t+l = εx,t+l +Bl,xzzt, and uz,t+l = εz,t+l +Bl,zzzt (16)

or

 ux,t+l

uz,t+l

 =

 xt+l

zt+l

−
 Ax

Az

−
 B1,xx B1,xz

B1,zx B1,zz


 xt+l−1

zt+l−1

− · · ·

−

 Bk,xx Bk,xz

Bk,zx Bk,zz


 xt+l−k

zt+l−k

+

 Bl,xz

Bl,zz

 zt (17)
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where B0,xz = 0 and B0,zz = −I. Using these definitions to substitute out εx,t+l and εz,t+l:

p (xt+l, zt+l|xt−k:t+l−1, zt−k:t+l−1,Θ)

∝ exp


−1

2



(ux,t+l −Bl,xzzt)′Σxx (ux,t+l −Bl,xzzt)

+ (ux,t+l −Bl,xzzt)′Σxz (uz,t+l −Bl,zzzt)

+ (uz,t+l −Bl,zzzt)′Σzx (ux,t+l −Bl,xzzt)

+ (uz,t+l −Bl,zzzt)′ Σzz (uz,t+l −Bl,zzzt)




(18)

∝ exp


−1

2



+z′t

[
B′l,xzΣ

xxBl,xz +B′l,xzΣ
xzBl,zz +B′l,zzΣ

zxBl,xz +B′l,zzΣ
zzBl,zz

]
zt

−z′t
[
B′l,xzΣ

xxux,t+l +B′l,xzΣ
xzuz,t+l +B′l,zzΣ

zxux,t+l +B′l,zzΣ
zzuz,t+l

]
−
[
u′x,t+lΣ

xxBl,xz + u′x,t+lΣ
xzBl,zz + u′z,t+lΣ

zxBl,xz + u′z,t+lΣ
zzBl,zz

]
zt

+
[
u′x,t+lΣ

xxux,t+l + u′x,t+lΣ
xzuz,t+l + u′z,t+lΣ

zxux,t+l + u′z,t+lΣ
zzuz,t+l

]




These imply that the conditional distribution is normal

p (xt+l, zt+l|xt−k:t+l−1, zt−k:t+l−1,Θ)

∝ exp

{
−1

2
(zt −Ml)

′
W−1l (zt −Ml)

}
(19)

∝ exp

{
−1

2

(
z′tW

−1
l zt − z′tW−1l Ml −M ′lW−1l zt +M ′lW

−1
l Ml

)}

Matching coeffi cients produces

W−1l = B′l,xzΣ
xxBl,xz +B′l,xzΣ

xzBl,zz +B′l,zzΣ
zxBl,xz +B′l,zzΣ

zzBl,zz (20)

Ml = Wl

[
B′l,xzΣ

xxux,t+l +B′l,xzΣ
xzuz,t+l +B′l,zzΣ

zxux,t+l +B′l,zzΣ
zzuz,t+l

]
(21)
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The original distribution was

p (zt|xt−k:t+k, zt+1:t+k, zt−k:t−1,Θ)

∝
k∏
l=0

p (xt+l, zt+l|xt−k:t+l−1, zt−k:t+l−1,Θ) (22)

∝
k∏
l=0

exp

{
−1

2

(
z′tW

−1
l zt − z′tW−1l Ml −M ′lW−1l zt +M ′lW

−1
l Ml

)}

∝ exp

{
−1

2

k∑
l=0

(
z′tW

−1
l zt − z′tW−1l Ml −M ′lW−1l zt +M ′lW

−1
l Ml

)}

Assuming conditional normality of zt implies

p (zt|xt−k:t+k, zt+1:t+k, zt−k:t−1,Θ)

∝ exp

{
−1

2
(zt −M)

′
W−1 (zt −M)

}
(23)

∝ exp

{
−1

2

(
z′tW

−1zt − z′tW−1M −M ′W−1zt +M ′W−1M
)}

Again matching coeffi cients

W−1 =

k∑
l=0

W−1l (24)

M = W

k∑
l=0

W−1l Ml (25)

Therefore,

p (zt|xt−k:t+k, zt+1:t+k, zt−k:t−1,Θ) ∼ N (M,W ) . (26)
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8 Appendix B: Tables and Figures

Table 1: Accuracy of BMF Using Simulated Data

Absolute bias and root mean squared errors of parameters estimated using BMF and coarse data relative
to true values over different sample length and pseudo true parameter values. The simulated model is
yt = A+ Byt−1 + εt, where yt = [xt zt]

′ , A = [Ax Az]
′ , B = [Bxx Bxz; Bzx Bzz] , εt = [εxt εzt ]

′ , εt ∼
N (0,Σ). T is sample size in quarters. The row labeled Abs Bias gives the percentage difference in the mean
absolute bias for BMF relative to coarse sampling; negative numbers indicate BMF achieves a lower value.
Similarly, the row labeled RMSE gives the percentage difference in root mean squared error for BMF relative
to coarse sampling; negative numbers indicate BMF achieves a lower value. All values are the result of 1000
simulated datasets.

Simulation 1 A = [0; 0] ;B = [0.9 0.9; 0 0.9]; Σ = [0.01 0; 0 0.05]
T = 20

Âx Âz B̂xx B̂xz B̂zx B̂zz
Abs Bias -77.643 -21.94 -34.55 -8.9621 -33.066 11.633
RMSE -76.145 -22.059 -35.189 -8.066 -22.859 7.6958

T = 80
Abs Bias -74.388 -18.858 -35.298 -7.6159 -47.802 -11.826
RMSE -75.764 -21.155 -35.144 -7.6314 -47.423 -13.02

Simulation 2 A = [0; 0] ;B = [0.9 0.9; 0 0.9]; Σ = [0.01 0.02; 0.02 0.05]
T = 20

Âx Âz B̂xx B̂xz B̂zx B̂zz
Abs Bias -61.839 -28.245 -34.249 -7.907 -31.841 -19.146
RMSE -61.54 -33.555 -33.013 -7.3243 -24.727 -23.358

T = 80
Abs Bias -64.286 -18.643 -34.002 -9.9857 -43.643 -20.311
RMSE -64.337 -19.64 -33.806 -9.0189 -44.587 -22.497

Simulation 3 A = [0; 0] ;B = [0.95 0.8; −0.01 0.99]; Σ = [0.01 0; 0 0.05]
T = 20

Âx Âz B̂xx B̂xz B̂zx B̂zz
Abs Bias -74.399 -11.03 -18.896 0.043434 -29.003 12.071
RMSE -69.858 -16.463 -8.5897 4.1556 -19.055 8.2203

T = 80
Abs Bias -69.573 -4.0152 -18.69 -0.38386 -28.168 0.48215
RMSE -70.276 -4.8683 -19.855 -1.0017 -29.027 -0.34357

Simulation 4 A = [0; 0] ;B = [0.95 0.8; −0.01 0.99]; Σ = [0.01 0.02; 0.02 0.05]
T = 20

Âx Âz B̂xx B̂xz B̂zx B̂zz
Abs Bias -57.378 -15.214 -20.013 -1.8474 -12.5 -3.1774
RMSE -56.188 -21.155 -17.871 -3.4858 -6.8278 -9.611

T = 80
Abs Bias -56.736 -4.2886 -23.924 -1.504 -27.321 -5.8757
RMSE -57.394 -4.888 -23.717 -1.304 -27.335 -7.5488
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Table 2: Descriptive Statistics, Monthly and Quarterly Application

Basic statistics for the change in industrial production, the inflation rate, the unemploy-
ment rate, and the change in real GDP.

Mean Std.Dev. Autocorrelation
∆ln(IP) 3.207 5.961 0.965
Inflation 3.719 3.005 0.988
Unempl 5.744 1.641 0.991
∆ln(GDP) 3.249 2.755 0.845
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Table 3: Parameter Estimates A, Monthly and Quarterly Application

Posterior means and standard deviations of the VAR constant terms, A. The variables
are, in order of appearance, the change in industrial production, the inflation rate, the
unemployment rate, and the change in GDP. All parameters are at the monthly frequency.

BMF:Monthly Quarterly
A1 (∆ln(IP)) -0.2291 -0.4058

(0.2807) (0.3329)
A2 (Inflation) -0.04862 0.02807

(0.08379) (0.1001)
A3 (Unempl) 0.184 0.1861

(0.0383) (0.03681)
A4 (∆ln(GDP)) 0.2096 0.01081

(0.1659) (0.148)
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Table 4: Parameter Estimates B, Monthly and Quarterly Application

Posterior means and standard deviations of the VAR coeffi cients, B. The variables are,
in order of appearance, the change in industrial production, the inflation rate, the unem-
ployment rate, and the change in GDP. All parameters are at the monthly frequency.

BMF:Monthly Quarterly
B11 (IP on IP) 1.041 0.9757

(0.02434) (0.0313)
B12 (Inflation on IP) -0.09648 -0.1123

(0.01882) (0.02415)
B13 (Unempl on IP) 0.1654 0.181

(0.03799) (0.04578)
B14 (GDP on IP) -0.1526 -0.0423

(0.05446) (0.06724)
B21 (IP on Inflation) 0.02811 0.04139

(0.007012) (0.009049)
B22 (Inflation on Inflation) 0.989 0.9877

(0.005656) (0.006982)
B23 (Unempl on Inflation) 0.009435 0.005014

(0.01139) (0.01369)
B24 (GDP on Inflation) -0.01963 -0.04567

(0.01564) (0.01958)
B31 (IP on Unempl) -0.0128 -0.007334

(0.003248) (0.003351)
B32 (Inflation on Unempl) 0.008099 0.008291

(0.002533) (0.002611)
B33 (Unempl on Unempl) 0.9721 0.974

(0.005134) (0.005036)
B34 (GDP on Unempl) -0.001592 -0.01146

(0.007313) (0.007225)
B41 (IP on GDP) 0.1154 0.07235

(0.01632) (0.01371)
B42 (Inflation on GDP) -0.02403 -0.03121

(0.01045) (0.01053)
B43 (Unempl on GDP) 0.06072 0.07473

(0.02141) (0.02027)
B44 (GDP on GDP) 0.7425 0.8287

(0.03703) (0.02958)
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Table 5: Parameter Estimates, Σ, Monthly and Quarterly Application

Posterior means and standard deviations of the covariance matrix Σ. The variables are,
in order of appearance, the change in industrial production, the inflation rate, the un-
employment rate, and the change in GDP. All parameters are at the monthly frequency.

BMF: Monthly
2.409 0.05786 -0.1332 0.6603
(0.2484) (0.05267) (0.02562) (0.1224)
0.05786 0.216 -0.007187 -0.01001
(0.05267) (0.02235) (0.007209) (0.03266)
-0.1332 -0.007187 0.04339 -0.06021
(0.02562) (0.007209) (0.004534) (0.01905)
0.6603 -0.01001 -0.06021 0.6975
(0.1224) (0.03266) (0.01905) (0.1109)

Quarterly
3.672 0.04347 -0.261 1.061
(0.3555) (0.07152) (0.03213) (0.1288)
0.04347 0.3049 -0.007526 0.00222
(0.07152) (0.02886) (0.007617) (0.03076)
-0.261 -0.007526 0.04261 -0.09586
(0.03213) (0.007617) (0.004016) (0.01322)
1.061 0.00222 -0.09586 0.6863
(0.1288) (0.03076) (0.01322) (0.06618)
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Table 6: Descriptive Statistics, Weekly and Monthly Application

Basic statistics for the one-year interest rate, slope of the yield curve, monthly growth rate
in the real price of oil, and industrial production.

Mean Std.Dev. Autocorrelation
Level 4.467 2.365 0.999
Slope 5.699 1.862 0.997
∆ln(Oil) 0.232 10.039 0.706
∆ln(IP) 2.165 4.145 0.997
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Table 7: Parameter Estimates A, Weekly and Monthly Application

Posterior means and standard deviations of the VAR constant terms, A. The variables
are, in order of appearance, the yield curve level, yield curve slope, change in real price of
oil, and industrial production growth. All parameters are at the weekly frequency.

BMF:Weekly Monthly
A1 Level -0.01066 -0.01016

(0.01306) (0.01408)
A2 Slope 0.01728 0.01479

(0.01567) (0.01573)
A3 ∆ln(Oil) 0.7337 0.2396

(0.7558) (1.043)
A4 ∆ln(IP) -0.1356 -0.1103

(0.05597) (0.04648)
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Table 8: Parameter Estimates B, Weekly and Monthly Application

Posterior means and standard deviations of the VAR coeffi cients, B. The variables are, in
order of appearance, the yield curve level, slope of the yield curve, change in real price of
oil, and industrial production growth. All parameters are at the weekly frequency.

BMF:Weekly Monthly
B11 (Level on Level) 0.9947 0.9949

(0.003616) (0.003858)
B12 (Slope on Level) 0.004002 0.003834

(0.004459) (0.004786)
B13 (Oil on Level) 0.0004077 0.00182

(0.0003276) (0.000925)
B14 (IP on Level) 0.002752 0.002669

(0.000874) (0.0009284)
B21 (Level on Slope) 0.004129 0.004154

(0.004342) (0.004319)
B22 (Slope on Slope) 0.993 0.9936

(0.005353) (0.005354)
B23 (Oil on Slope) 0.0005737 0.002077

(0.0003957) (0.001039)
B24 (IP on Slope) -0.0005504 -0.0006479

(0.001048) (0.00104)
B31 (Level on Oil) 0.1136 -0.03534

(0.2123) (0.3238)
B32 (Slope on Oil) -0.2126 -0.02515

(0.2593) (0.372)
B33 (Oil on Oil) 0.7067 0.4553

(0.01958) (0.1214)
B34 (IP on Oil) 0.01025 0.04596

(0.05193) (0.08615)
B41 (Level on IP) -0.04592 -0.04722

(0.01541) (0.01277)
B42 (Slope on IP) 0.06202 0.05808

(0.01905) (0.01585)
B43 (Oil on IP) 0.003134 0.007225

(0.001689) (0.003171)
B44 (IP on IP) 0.9939 0.9965

(0.003735) (0.003108)
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Figure 1: Posterior Densities for Monthly and Quarterly Application
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Figure 2: Impulse Responses for Monthly and Quarterly Application
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Figure 3: Posterior Densities for Weekly and Monthly Application
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Figure 4: Impulse Responses for Weekly and Monthly Application
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